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A b stract — S c i e n t i f ic evidence for ano m a lous phenomena is frequently sup-
p o rt ed by conventional measures of st a t ist ical significance such as p- v a l u es .
H ow e ve r, th ese measures have been shown to be unreliable in d ic a t o rs of th e
e x istence of genuine effects, and ro u t inely exaggerate the true significance of
e x perimental data. They are, more ove r, es pecially unsuitable for the asses s-
ment of ano m a lous phenomena. More appropriate st a t ist ical techniques are
a v a i lable, but pose their own problems when applied to ano m a lous pheno m e-
na. I outline an approach to hypoth es is test ing which allows conve n t i o n a l
m e a s u res of significance to be re t a in ed, while off e r ing substantially low e r
r isk of seeing significance in chance eff e c t s .

K e y w o rds:  st a t ist ical significance — p- v a l u es — Bayesian in f e re n c e

Introduction

It is one of the iro n i es of contemp o r a ry scientific res e a rch that while many or-
thodox scientists decry in vestigations of ano m a lous phenomena, the st a n d a rd s
of such res e a rch are frequently hi gher than those in conventional science.
Randomization has been in use lo ng e r, and more approp r i a t e l y, in parapsy-
c h o logy than in any other scientific dis c i p l ine (Hacking, 1988), and contro l l ed
d o u b l e - b l ind protocols and other def e n s es again st fraud and experimenter ef-
fects are used more extensively in parapsychology than in orthodox scientific
res e a rch (Sheldrake, 1998). A key part of this rigorous approach to the in vest i-
gation of ano m a lous phenomena is the careful st a t ist ical analysis of data to
gauge their signific a n c e .

Te c h n i q u es of significance test ing are to be found in all in t ro d u c t o ry st a t is-
t ics textbooks. These expla in such concepts as p- v a l u es and 95 pe rcent confi-
dence in t e rvals, and show how to derive them from a wide variety of expe r i-
mental set-ups. They are ro u t inely used in orthodox science, and have come to
be essential support for any claim to have detected genuine eff e c t s .

H ow e ve r, over the la st 30 years th e re have been re pe a t ed warn ings that th es e
st a n d a rd techniques are potentially hi ghly mis l e a d ing, and capable of suggest-
ing significance in results in fact due to no thing more than chance (e . g . J ef-
f reys, 1961; Edwards et al., 1963; Berger & Sellke, 1987; Sturrock, 1997).
G i ven the potential impact on scientific pro g ress, it is somewhat ast o n is hing
that th ese warn ings have failed to gain much curre n c y. In what fo l lows, I
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e x p la in the nature of the problem, why it matters, and how and why re-
s e a rc h e rs of ano m a lous phenomena should take a lead in applying more re l i-
able measures of st a t ist ical signific a n c e .

Significance Testing of Anomalous Phenomena

The most widely used conventional measure of st a t ist ical significance is th e
s o - c a l l ed p-value. This is def in ed as the probability of getting at least as im-
p res s i ve data as those obtain ed in an experiment, a s s um ing m e re chance is re-
sponsible; put symbolic a l l y, p-value = Pr(> data | fluke), where | imp l i es
“ g i ven.” By convention, results giving a p-value of no greater than 0.05 are
generally deemed “significant,” and are widely held to be unlikely to be due to
c h a n c e .

T h e re are serious flaws wi th this line of re a s o n ing. To begin wi th, the cut-off
of 0.05 is entirely arbitrary, having its origins in no thing more st a t ist ically jus-
tifiable than a math e m a t ical coincidence concern ing the Normal dist r i b u t i o n
( J eff reys, 1961). More worry ing, and contrary to appe a r a n c es, a p-value of
0.05 does no t i mply that the probability of the results being a fluke is 1 in 20.
R a th e r, it means that a s s um ing chance alone is at work, th e re is a 1 in 20 pro b-
ability that re petitions of the experiment will produce results at least as im-
p res s i ve as  those seen.

T his convoluted def inition is symp t o m a t ic of the fact that p- v a l u es are re la-
t i vely unin t e rest ing measures of significance, pred ic a t ed on chance being th e
t rue cause of the observed data. What we are much more in t e rest ed in is th e
p robability that fluke really is the cause of the effect we saw, given the data we
m e a s u red , i . e . P r ( F l u k e | data). This can be comp u t ed from data v i a B a y es ’s
T h e o rem (see, e . g . Lee, 1997):

w h e re Pr(Fluke) is the so-called prior probability of fluke being res p o n s i b l e
for our results, and BF is the Bayes Factor, which takes account of the re la t i ve
p ro b a b i l i t i es of the various possible explanations of the data. Equation (1) is
central to so-called Bayesian in f e rence, and a vast literature has arisen aro u n d
ways of setting Pr(Fluke) and BF in various experimental designs. A key pro b-
lem in Bayesian in f e rence is the need to quantify the level of prior belief in th e
h y p o th es is under test, on which the pre c ise value of both Pr(Fluke) and BF de-
pend. Attempts to solve this problem are still being deve loped, and ways of
re p res e n t ing prior belief re m a in controve rsial. The “prior problem” is es pe-
cially seve re in the case of ano m a lous phenomena, about which th e re is usual-
ly little or no prior underst a n d ing on which to base a sensible prior belief .

It is, how e ve r, possible to set a low er bound on the Bayes Factor for many
s i g n i f icance test ing problems that is in d e pendent of the exact value of th e
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p r i o r. This allows us to set a lower bound on Pr(Fluke | data) for a given set of
data, and thus to comp a re this measure of significance wi th that based on con-
ventional p- v a l u es. The outcome is somewhat ala rm ing .

Let us take the typical case in which measurements of a parameter, q , are
u s ed to detect the presence of a spe c i f ic ano m a lous pheno m e non. Such an in-
vestigation then typically consists of collecting various experimental data q i,
c o mp u t ing their mean, and comp a r ing it wi th q 0, the value of q e x pe c t ed in th e
absence of the pheno m e non. To determ ine whether we have obtain ed a “sig-
n i f icant” result, the st a n d a rd st a t ist ical pro c ed u re is to set up a test - st a t ist ic , z ,
w hich takes into account the sample size, mean and variance, and determ in e
the probability of obtain ing at least as la rge a test st a t ist ic, a s s um ing c h a n c e
a lone is at work; if the res u l t ing p-value is less than 0.05, then the data are
taken to be “signific a n t . ”

H ow e ve r, the real “significance” of such a p-value becomes clear when we
c o n ve rt it into Pr(Fluke | data), the chances that our data really are the pro d u c t
of a fluke. This conve rsion is possible by an application of (1), for which val-
u es of Pr(Fluke) and BF are re q u i red. As we are setting a lower bound fo r
Pr(Fluke | data), let us take set  Pr(Fluke) = 0.5, re p res e n t ing agno st ic ism to-
w a rds the existence of the ano m a lous pheno m e non; clearly, this is a ve ry char-
itable value to apply to many such phenomena, about whose existence skepti-
c ism is often merited. For BF, it can be shown (see, e . g . Lee, p. 131) that under
ve ry general conditions this is bounded below by exp( - z2/ 2 ) .

I n s e rt ing th ese values into (1) we find that, for a given value of z , the pro b a-
bility that mere fluke really is responsible for our fin d ings is at least

To complete our comp a r ison wi th conventional p- v a l u es, we need the value of
z c o rres p o n d ing to p = 0.05. It is usual (and st a t ist ical good practice) in re-
s e a rch into ano m a lous phenomena to assume conserv a t i vely that the pheno m-
e non could lead to a mean value for q e i ther hi gher or lower than q 0; this leads
to the use of two-tailed tests, for which a p-value of 0.05 is equivalent to a z-
value of 1.96. Insert ing this into (2), we then find that a p-value of 0.05 leads
to a lower bound on Pr(Fluke | data) of 0.13. In other words, for this type of ex-
perimental design, a p-value of 0.05 actually const i t u t es odds of no more th a n
7 to 1 again st fluke being the true explanation for our res u l t s .

D espite being based on a ve ry charitable agno st ic prior of Pr(Fluke) = 0.5,
the res u l t ing probability again st fluke is hardly imp res s i ve evidence on whic h
to base a claim for the reality of an ano m a lous pheno m e non. Applying even a
mildly skeptical prior of Pr(Fluke) = 0.9 again st the reality of such a pheno m-
e non leads to Pr(Fluke | data) > 0.57. In other words, a “significant” fin d ing
wi th p = 0.05 is actually more likely than not to be merely a fl u k e .

  
Pr Fluke  data( ) ³  1 +  exp z 2 2( ){ }- 1

                            (2)
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T his tendency of p- v a l u es to exaggerate significance is even more marked in
o ther widely used experimental designs. Investigations of altern a t i ve med ic in e
f requently use a 2 ́ 2 type of st u d y, in which patients are randomly assigned to
e i ther the treatment or placebo arms of the st u d y, and the numbers of res p o n-
d e rs in each comp a red. A st a n d a rd approach is to conve rt the data to a c 2

value, which is then turn ed into a p-value. Accord ing to conventional meth o d s ,
if our data are to be “significant at the 0.05 level,” we re q u i re 0.01 < p < 0 . 0 5 .

A g a in, how e ve r,  Equation (1) shows that the real “significance” of such a
f in d ing is much less imp res s i ve than the p- v a l u es imp l y. Spe c i f ic a l l y, th e
lower bound on the Bayers Factor, BFL, is given by (see, e . g . B e rger & Sellke,
1 9 8 7 ) :

If we hold a scientifically agno st ic view about the likely eff icacy of the tre a t-
ment, we set Prob(Fluke) = 0.5, which v i a (1) leads to a lower bound of

Ta k ing the central value of the “st a t ist ically significant” range of p- v a l u es
of 0.03 leads to c 2 = 4.71, and thus BFL > 0.34. From (3)and (4), we may now
c a l c u late the lower bound on the probability that fluke really was res p o n s i b l e
for our data; we find Prob(Fluke | data) > 0.25. In other words, at least a quar-
ter of results “significant at the p = 0.05 level” are in fact no thing more th a n
chance effects. As befo re, adding even a mild level of skeptic ism — as is ap-
p ropriate wi th many claims of ano m a lous phenomena — makes chance an en-
t i rely plausible explanation of our data: if Pr(Fluke) = 0.9, then we fin d
Pr(Fluke | data) is at least 0.75: th ree out of four such results are no thing more
than fl u k es .

T h ese examp l es hi gh l i ght the inadequacy of p- v a l u es as reliable measures of
s i g n i f icance, es pecially in in vestigations of ano m a lous phenomena whose ex-
istence has low prior pro b a b i l i t y. It can also be shown that the widely used al-
t e rn a t i ve to p- v a l u es, 95 pe rcent confidence in t e rvals, suffer from ve ry simila r
d ef e c t s .

The question then aris es: if conventional in f e rence techniques are in a d e-
quate, what should be used in stead? Unfo rt u n a t e l y, Bayesian methods suff e r
f rom a number of problems that militate again st their use in analysis of ano m-
a lous results, at least for the time being. The most imp o rtant of th ese has al-
ready been mentioned: setting appropriate priors. This is a major source of de-

Pr Fluke  data( ) >  BFL / 1 +  BFL[ ]                                   (4) 

 BFL  =  c 2( )· exp 1 - c 2( )/2[ ]                                   (3)



bate even in the application of Bayesian methods to orthodox science, where
p roblems of elicitation of priors — either as poin t - est i m a t es, as re q u i red here ,
or as distributions — have yet to be res o l ved. Ano m a lous phenomena pres e n t
e ven more seve re challeng es in the setting of priors. In addition, the applic a-
tion of Bayesian techniques to all but the simp l est cases of in f e rence is math e-
m a t ically and computationally demanding, and cannot be red u c ed to th e
“cookbook” approach possible wi th traditional in f e rential meth o d s .

D espite th ese diff ic u l t i es, it is clear that if res e a rc h e rs are to have real confi-
dence in claims for the existence of ano m a lous phenomena, such claims must
be based on more demanding methods of significance test ing than those used
by orthodox science. Sturrock (1997) has off e red one useful method, based on
Maximum Entrop y. I now offer ano th e r, which re t a ins more of the familiar
st ru c t u re of conventional significance test ing by leading to p- v a l u es wi th im-
p roved security again st suggest ing significance in data actually due to chance.

A New Criterion for “Significance”

As we have seen, it is possible to conve rt a p-value into its corres p o n d ing
B a y esian measure of significance, Pr(Fluke | data). How e ve r, the problem of
s e t t ing reasonable and unequivocal priors in the assessment of ano m a lous phe-
nomena means that only a low er bound on Pr(Fluke | data) can be calcula t ed
u n c o n t rove rsially for a given experimental design. Neve rth e l ess, this low e r
bound can still provide a useful guide to the real significance of given data.

Our st a rt ing point is the conventional criterion of a probability of 0.05 as in-
d ic a t i ve of a significant fin d ing. Its lo ng - st a n d ing and wi d es p read use suggest s
that many res e a rc h e rs are happy wi th this level of evidence again st chance ef-
fects — despite the fact that when used wi th p- v a l u es, this is not in fact what it
means. Used in conjunction wi th Bayesian in f e rence th e o ry, how e ve r, the 0.05
f i g u re takes on its familiar in t e r p retation: if Pr(Fluke | data) < 0.05, then th e
p robability of chance being the correct explanation of a given data set is 
in d e ed less than 1 in 20. We th e refo re propose using this figure as a new 
m inimal st a n d a rd for measuring significance, based on the fo l lowing ro b u stly 
c o n s e rv a t i ve criterion: No suggestion of significance should be made unles s
Pr(Fluke | data) < 0.05.

To determ ine whether this criterion is met for any spe c i f ic set of data re-
q u i res two factors: the size of the test st a t ist ic generated by the data — whic h
sets the lower bound on the Bayes Factor, BF — and the prior probability of
the results being due to mere chance, Pr(Fluke). It can be shown (e . g . B e rger &
Sellke, 1987) that (2) is a conserv a t i ve lower bound for BF which can be used
in all practical circ u m st a n c es. This allows us to turn our new criterion for sig-
n i f icance into a set of p- v a l u es which are much more demanding than th o s e
c o n ventionally used. We simply set (1) equal to 0.05, and determ ine the res u l t-
ing value of BF for diff e rent values of Pr(Fluke); in ve rt ing (3) then leads to c 2,
and to the corres p o n d ing p- v a l u es need ed to give Pr(Fluke | data) for various
Pr(Fluke). The results are given in Table 1.
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It is clear from Table 1 that we should not even thin k of cla i m ing signifi-
cance for any result whose two-tailed p-value is hi gher than 0.003; this value
c o rresponds to an agno st ic prior of Pr(Fluke) = 0.5, which is undoubtedly gen-
e rous to most claims for the existence of ano m a lous phenomena. Even so, th e
res u l t ing p-value is 17 times more demanding than the conventional 0.05 crite-
rion used for gauging significance, and it is clear that many extant claims fo r
a no m a lous phenomena fail to meet it.

Reputable res e a rc h e rs would no doubt feel more confident def e n d ing cla i m s
to have detected evidence for an ano m a lous pheno m e non by applying at least a
mild amount of skeptic ism in their assessment of significance. In this case,
Table 1 shows that a p-value of no more than about 0.0002 is appropriate, a
value 250 times more demanding than the conventional 0.05 criterion. Clearly,
those making extraord in a ry claims must accumulate considerably more im-
p res s i ve evidence if they are to substantiate their claims on the basis of the cri-
terion pres e n t ed here .

It should always be borne in mind that a “significant” result merely means
that chance has been dis p o s ed of as an explanation — not that the reality of th e
a no m a lous pheno m e non has been proved. Neve rth e l ess, res e a rc h e rs who satis-
fy the above criterion can have more confidence that their results are worthy of
f u rther in vestigation than if they rely on conventional criteria for “signific a n t ”
p- v a l u es .

Conclusions

The failings of conventional significance test ing have been poin t ed out re-
pe a t edly for many decades, yet p- v a l u es and re la t ed measures of signific a n c e
c o n t inue to be used unive rsally in orthodox scientific res e a rch. As I have
s h own, how e ve r, th ese failings are far from trivial, and are es pecially serious
for res e a rch into the existence of ano m a lous phenomena. I have outlin ed an ap-
p roach to gauging significance that off e rs greater protection again st mis in t e r-
p re t ing chance effects, while re t a in ing the familiarity and simp l icity of th e
c o n ventional appro a c h .

TABLE 1
Maximum p- v a l u es Need ed to Justify Any Claim of Significance, 

for Various Levels of Skeptic is m

L e vel of P r ( F l u k e ) Maximum p-value fo r
S k e p t ic is m “ S i g n i f ic a n c e ”

A g no st ic 0 . 5 0 0 0 . 0 0 3
M i l d 0 . 9 0 0 0 . 0 0 0 2
M o d e r a t e 0 . 9 9 0 1.3 x 10– 5

H i gh 0 . 9 9 9 1.0 x 10– 6



R es e a rc h e rs of ano m a lous phenomena have lo ng taken the lead in adop t ing
e x perimental protocols that are more st r ingent than those used in most areas of
o rthodox science. The adoption of more st r ingent tests of significance of th e
t y pe outlin ed here is, I would argue, a natural pro g ression of this judicious pol-
ic y.
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