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Abstract — Scientific evidence for anomalous phenomena is frequently sup-
ported by conventional measures of statistical significance such as p-values.
However, these measures have been shown to be unreliable indicators of the
existence of genuine effects, and routinely exaggerate the true significance of
experimental data. They are, moreover, especially unsuitable for the assess-
ment of anomalous phenomena. More appropriate statistical techniques are
available, but pose their own problems when applied to anomalous phenome-
na. I outline an approach to hypothesis testing which allows conventional
measures of significance to be retained, while offering substantially lower
risk of seeing significance in chance effects.
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Introduction

It is one of the ironies of contemporary scientific research that while many or-
thodox scientists decry investigations of anomalous phenomena, the standards
of such research are frequently higher than those in conventional science.
Randomization has been in use longer, and more appropriately, in parapsy-
chology than in any other scientific discipline (Hacking, 1988), and controlled
double-blind protocols and other defenses against fraud and experimenter ef-
fects are used more extensively in parapsychology than in orthodox scientific
research (Sheldrake, 1998). A key part of this rigorous approach to the investi-
gation of anomalous phenomena is the careful statistical analysis of data to
gauge their significance.

Techniques of significance testing are to be found in all introductory statis-
tics textbooks. These explain such concepts as p-values and 95 percent confi-
dence intervals, and show how to derive them from a wide variety of experi-
mental set-ups. They are routinely used in orthodox science, and have come to
be essential support for any claim to have detected genuine effects.

However, over the last 30 years there have been repeated warnings that these
standard techniques are potentially highly misleading, and capable of suggest-
ing significance in results in fact due to nothing more than chance (e.g. Jef-
freys, 1961; Edwards et al., 1963; Berger & Sellke, 1987; Sturrock, 1997).
Given the potential impact on scientific progress, it is somewhat astonishing
that these wamings have failed to gain much currency. In what follows, I
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explain the nature of the problem, why it matters, and how and why re-
searchers of anomalous phenomena should take a lead in applying more reli-
able measures of statistical significance.

Significance Testing of Anomalous Phenomena

The most widely used conventional measure of statistical significance is the
so-called p-value. This is defined as the probability of getting at least as im-
pressive data as those obtained in an experiment, assuming mere chance is re-
sponsible; put symbolically, p-value = Pr(> datalfluke), where | implies
“given.” By convention, results giving a p-value of no greater than 0.05 are
generally deemed “significant,” and are widely held to be unlikely to be due to
chance.

There are serious flaws with this line of reasoning. To begin with, the cut-off
of 0.05 is entirely arbitrary, having its origins in nothing more statistically jus-
tifiable than a mathematical coincidence concerning the Normal distribution
(Jeffreys, 1961). More worrying, and contrary to appearances, a p-value of
0.05 does not imply that the probability of the results being a fluke is 1 in 20.
Rather, it means that assuning chance alone is at work, there is a 1 in 20 prob-
ability that repetitions of the experiment will produce results at least as im-
pressive as those seen.

This convoluted definition is symptomatic of the fact that p-values are rela-
tively uninteresting measures of significance, predicated on chance being the
true cause of the observed data. What we are much more interested in is the
probability that fluke really is the cause of the effect we saw, given the data we
measured, i.e. Pr(Flukeldata). This can be computed from data via Bayes’s
Theorem (see, e.g. Lee, 1997):

| — Pr (Fluke) }1 "

Pr (Fluke ]data) = 1 +
(Fluke ] data) { Pr (Fluke) « BF

where Pr(Fluke) is the so-called prior probability of fluke being responsible
for our results, and BF is the Bayes Factor, which takes account of the relative
probabilities of the various possible explanations of the data. Equation (1) is
central to so-called Bayesian inference, and a vast literature has arisen around
ways of setting Pr(Fluke) and BF in various experimental designs. A key prob-
lem in Bayesian inference is the need to quantify the level of prior belief in the
hypothesis under test, on which the precise value of both Pr(Fluke) and BF de-
pend. Attempts to solve this problem are still being developed, and ways of
representing prior belief remain controversial. The “prior problem” is espe-
cially severe in the case of anomalous phenomena, about which there is usual-
ly little or no prior understanding on which to base a sensible prior belief.

It is, however, possible to set a lower bound on the Bayes Factor for many
significance testing problems that is independent of the exact value of the



Anomalous Phenomena 3

prior. This allows us to set a lower bound on Pr(Fluke | data) for a given set of
data, and thus to compare this measure of significance with that based on con-
ventional p-values. The outcome is somewhat alarming.

Let us take the typical case in which measurements of a parameter, 0, are
used to detect the presence of a specific anomalous phenomenon. Such an in-
vestigation then typically consists of collecting various experimental data 0,
computing their mean, and comparing it with 0,, the value of 0 expected in the
absence of the phenomenon. To determine whether we have obtained a “sig-
nificant” result, the standard statistical procedure is to set up a test-statistic, z,
which takes into account the sample size, mean and variance, and determine
the probability of obtaining at least as large a test statistic, assumning chance
alone is at work; if the resulting p-value is less than 0.05, then the data are
taken to be “significant.”

However, the real “significance” of such a p-value becomes clear when we
convert it into Pr(Fluke | data), the chances that our data really are the product
of a fluke. This conversion is possible by an application of (1), for which val-
ues of Pr(Fluke) and BF are required. As we are setting a lower bound for
Pr(Fluke | data), let us take set Pr(Fluke) = 0.5, representing agnosticism to-
wards the existence of the anomalous phenomenon; clearly, this is a very char-
itable value to apply to many such phenomena, about whose existence skepti-
cism is often merited. For BF, it can be shown (see, e.g. Lee, p. 131) that under
very general conditions this is bounded below by exp(—z%/2).

Inserting these values into (1) we find that, for a given value of z, the proba-
bility that mere fluke really is responsible for our findings is at least

1
Pr (Flukeldata) > { + eXp€2/2)} (2)

To complete our comparison with conventional p-values, we need the value of
z corresponding to p = 0.05. It is usual (and statistical good practice) in re-
search into anomalous phenomena to assume conservatively that the phenom-
enon could lead to a mean value for 0 either higher or lower than 0; this leads
to the use of two-tailed tests, for which a p-value of 0.05 is equivalent to a z-
value of 1.96. Inserting this into (2), we then find that a p-value of 0.05 leads
to a lower bound on Pr(Fluke | data) of 0.13. In other words, for this type of ex-
perimental design, a p-value of 0.05 actually constitutes odds of no more than
7 to 1 against fluke being the true explanation for our results.

Despite being based on a very charitable agnostic prior of Pr(Fluke) = 0.5,
the resulting probability against fluke is hardly impressive evidence on which
to base a claim for the reality of an anomalous phenomenon. Applying even a
mildly skeptical prior of Pr(Fluke) = 0.9 against the reality of such a phenom-
enon leads to Pr(Fluke | data) > 0.57. In other words, a “significant” finding
with p = 0.05 is actually more likely than not to be merely a fluke.
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This tendency of p-values to exaggerate significance is even more marked in
other widely used experimental designs. Investigations of alternative medicine
frequently use a 2 x 2 type of study, in which patients are randomly assigned to
either the treatment or placebo arms of the study, and the numbers of respon-
ders in each compared. A standard approach is to convert the data to a %*
value, which is then turned into a p-value. According to conventional methods,
if our data are to be “significant at the 0.05 level,” we require 0.01 <p < 0.05.

Again, however, Equation (1) shows that the real “significance” of such a
finding is much less impressive than the p-values imply. Specifically, the
lower bound on the Bayers Factor, BF, , is given by (see, e.g. Berger & Sellke,
1987):

BR, = J(x_z)-exr)[(l—xz)z] 3)

If we hold a scientifically agnostic view about the likely efficacy of the treat-
ment, we set Prob(Fluke) = 0.5, which via (1) leads to a lower bound of

Pr (Fluke | data) > BF./[I + BF_ ] @)

Taking the central value of the “statistically significant” range of p-values
of 0.03 leads to x> = 4.71, and thus BF, > 0.34. From (3)and (4), we may now
calculate the lower bound on the probability that fluke really was responsible
for our data; we find Prob(Fluke | data) > 0.25. In other words, at least a quar-
ter of results “significant at the p = 0.05 level” are in fact nothing more than
chance effects. As before, adding even a mild level of skepticism — as is ap-
propriate with many claims of anomalous phenomena — makes chance an en-
tirely plausible explanation of our data: if Pr(Fluke) = 0.9, then we find
Pr(Fluke | data) is at least 0.75: three out of four such results are nothing more
than flukes.

These examples highlight the inadequacy of p-values as reliable measures of
significance, especially in investigations of anomalous phenomena whose ex-
istence has low prior probability. It can also be shown that the widely used al-
temative to p-values, 95 percent confidence intervals, suffer from very similar
defects.

The question then arises: if conventional inference techniques are inade-
quate, what should be used instead? Unfortunately, Bayesian methods suffer
from a number of problems that militate against their use in analysis of anom-
alous results, at least for the time being. The most important of these has al-
ready been mentioned: setting appropriate priors. This is a major source of de-
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bate even in the application of Bayesian methods to orthodox science, where
problems of elicitation of priors — either as point-estimates, as required here,
or as distributions — have yet to be resolved. Anomalous phenomena present
even more severe challenges in the setting of priors. In addition, the applica-
tion of Bayesian techniques to all but the simplest cases of inference is mathe-
matically and computationally demanding, and cannot be reduced to the
“cookbook” approach possible with traditional inferential methods.

Despite these difficulties, it is clear that if researchers are to have real confi-
dence in claims for the existence of anomalous phenomena, such claims must
be based on more demanding methods of significance testing than those used
by orthodox science. Sturrock (1997) has offered one useful method, based on
Maximum Entropy. I now offer another, which retains more of the familiar
stiucture of conventional significance testing by leading to p-values with im-
proved security against suggesting significance in data actually due to chance.

A New Criterion for ‘“Significance”

As we have seen, it is possible to convert a p-value into its corresponding
Bayesian measure of significance, Pr(Fluke | data). However, the problem of
setting reasonable and unequivocal priors in the assessment of anomalous phe-
nomena means that only a lower bound on Pr(Fluke | data) can be calculated
uncontroversially for a given experimental design. Nevertheless, this lower
bound can still provide a useful guide to the real significance of given data.

Our starting point is the conventional criterion of a probability of 0.05 as in-
dicative of a significant finding. Its long-standing and widespread use suggests
that many researchers are happy with this level of evidence against chance ef-
fects — despite the fact that when used with p-values, this is not in fact what it
means. Used in conjunction with Bayesian inference theory, however, the 0.05
figure takes on its familiar interpretation: if Pr(Fluke | data) < 0.05, then the
probability of chance being the correct explanation of a given data set is
indeed less than 1 in 20. We therefore propose using this figure as a new
minimal standard for measuring significance, based on the following robustly
conservative criterion: No suggestion of significance should be made unless
Pr(Fluke | data) < 0.05.

To determine whether this criterion is met for any specific set of data re-
quires two factors: the size of the test statistic generated by the data — which
sets the lower bound on the Bayes Factor, BF — and the prior probability of
the results being due to mere chance, Pr(Fluke). It can be shown (e.g. Berger &
Sellke, 1987) that (2) is a conservative lower bound for BF which can be used
in all practical circumstances. This allows us to turn our new criterion for sig-
nificance into a set of p-values which are much more demanding than those
conventionally used. We simply set (1) equal to 0.05, and determine the result-
ing value of BF for different values of Pr(Fluke); inverting (3) then leads to 2,
and to the corresponding p-values needed to give Pr(Fluke | data) for various
Pr(Fluke). The results are given in Table 1.
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It is clear from Table 1 that we should not even think of claiming signifi-
cance for any result whose two-tailed p-value is higher than 0.003; this value
corresponds to an agnostic prior of Pr(Fluke) = 0.5, which is undoubtedly gen-
erous to most claims for the existence of anomalous phenomena. Even so, the
resulting p-value is 17 times more demanding than the conventional 0.05 crite-
rion used for gauging significance, and it is clear that many extant claims for
anomalous phenomena fail to meet it.

Reputable researchers would no doubt feel more confident defending claims
to have detected evidence for an anomalous phenomenon by applying atleasta
mild amount of skepticism in their assessment of significance. In this case,
Table 1 shows that a p-value of no more than about 0.0002 is appropriate, a
value 250 times more demanding than the conventional 0.05 criterion. Clearly,
those making extraordinary claims must accumulate considerably more im-
pressive evidence if they are to substantiate their claims on the basis of the cri-
terion presented here.

It should always be borne in mind that a “significant” result merely means
that chance has been disposed of as an explanation — not that the reality of the
anomalous phenomenon has been proved. Nevertheless, researchers who satis-
fy the above criterion can have more confidence that their results are worthy of
further investigation than if they rely on conventional criteria for “significant”
p-values.

Conclusions

The failings of conventional significance testing have been pointed out re-
peatedly for many decades, yet p-values and related measures of significance
continue to be used universally in orthodox scientific research. As I have
shown, however, these failings are far from trivial, and are especially serious
for research into the existence of anomalous phenomena. I have outlined an ap-
proach to gauging significance that offers greater protection against misinter-
preting chance effects, while retaining the familiarity and simplicity of the
conventional approach.

TABLE 1
Maximum p-values Needed to Justify Any Claim of Significance,
for Various Levels of Skepticism

Level of Pr(Fluke) Maximum p-value for
Skepticism “Significance”

Agnostic 0.500 0.003

Mild 0.900 0.0002

Moderate 0.990 1.3x107°

High 0.999 1.0x10°
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Researchers of anomalous phenomena have long taken the lead in adopting
experimental protocols that are more stringent than those used in most areas of
orthodox science. The adoption of more stringent tests of significance of the
type outlined here is, I would argue, a natural progression of this judicious pol-

icy.
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