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A Rescaled Range Analysis of Random Events'
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Abstract — The rescaled range statistical analysis was applied on sets of ran-
dom numbers to demonstrate its potential in studying various types of biases
and the presence of periodical features. The data were generated by electron-
ic random number generators in psychokinesis tests. According to the theory
of Hurst, the rescaled range of independent random data is proportional to the
square root of their number. In data which are not independent, the fractional
Brownian motion model of Mandelbrot is useful in modeling their time series
as persistent or anti-persistent. A weak predominantly persistent type of frac-
tional Brownian motion in the data indicated a bias which could not be distin-
guished from chance fluctuations after comparison with computer simulated
data. The basic steps for the application of this method, the variety of infor-
mation it can provide and its limitations are discussed. The method provides
a relatively simple, yet robust, technique for studying anomalies in random
events.

Keywords: anomalies — fractional Brownian motion — Hurst exponent —
periodicities — psychokinesis — rescaled range analysis

1. Introduction

Science is often confronted with puzzles which stay unsolved for long periods
of time, one of these being the Hurst effect (Feder, 1988). The effect has been
initially observed in sequences of records in time, x(¢), of natural phenomena
such as river discharges, which were expected to be independent over long pe-
riods of time. Hurst, in his analysis, first transformed the natural records in
time into a new variable X(z,N), the so-called accumulated departure of the
natural record in time in a given year 7 (r = 1, 2, ..., N), from the average, X(¢),
over a period of N years (Hurst, 1951; Korvin, 1992). The transformation fol-
lows the formula

X, N)= 2 (x; Ty )= 2% (— &y (1.1)
i=1 i=1

'Part of this work was presented at the 1996 Euro SSE conference. Request for reprints should be
addressed to: Fotini Pallikari, Physics Department, University of Athens, Zografos, Panepistimiopolis,
Athens 157 84, Greece.
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Then, he intioduced the rescaled range R/S, in which the range R(N) is defined
by

R(N) = max X(t, N)— min X(,N) (1.2)
1<t<N 1<tsN

and the standard deviation S(N) by

S(N) == 2 [x, -3y ] (1.3)
N =

With the use of the dimensionless rescaled range, Hurst was able to compare
natural phenomena of various kinds. He found, then, that the natural phenom-
ena he studied followed the empirical law

RIS =(aN)? (1.4)

where the Hurst exponent H — called K by Hurst — was more or less symmet-
rically distributed about a mean 0.73 with a standard deviation (SD) of about
0.09. Although this value was slightly overestimated due to the small number
of available data for certain phenomena, Hurst was able to reproduce the rela-
tion (1.4) by using simulations of biased random events. He derived the rela-
tion (1.5) below, which the rescaled range parameter should follow for truly
unbiased events, and was able to show that his own simulations of unbiased
random events obeyed it:

RIS =(nnp Y (1.5)

This relation was also derived and discussed by Feller (1951) and later con-
firmed by Feder (1988) by a computer simulation of random events.

Hurst’s simulations of independent random processes (1951) were done by
tossing n (=10) coins N (= 1000) times and taking the random variable x to be
the number of heads minus the number of tails. It is worth pointing out, as it
will be discussed later, that the random variable in this simulation can be repre-
sented by the net displacement of a particle undergoing a typical random walk
on a line where the particle moves in steps of equal length either to the left or to
the right at equal probability. Feder has, however, shown that the position in
time, x(7), of a particle that walks at random with steps of unit length on a line
becomes asymptotically an ordinary Brownian motion with a Gaussian distrib-
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ution of step lengths for time scales much larger than the time between steps
and for distances much larger than the unit step length. The variable X(z, N) of
Equation (1.1) represents, in fact, the position of the particle which makes
steps x(7) away from the origin.

Mandelbrot later introduced a generalized form of the Brownian motion
model, the fractional Brownian motion, fBm, to model the Hurst effect (Man-
delbrot & Van Ness, 1968; Mandelbrot, 1982). In the fBm model the Hurst ex-
ponent, as shown in relation (1.4), is a real number in the range 0 < H < 1.
There are three types of generalized fBm: (a) the persistent, for values of H in
the range 0.5 < H < 1, (b) the anti-persistent, for 0 < H < 0.5, and (c) the case
H =0.5 which corresponds to the independent white noise processes of ordi-
nary Brownian motion.

According to Mandelbrot, to be anti-persistent is to tend to turn back toward
the point one came from or, in terms of the random walk picture, to diffuse
slower than in the ordinary Brownian motion. Any increasing trend in the past
makes a decreasing trend in the future more probable, and vice versa, the
strength of this anti-correlation depending on how much lower than 0.5 the H
parameter is. The other type of fBm, the pemistent, implies that the incre-
ments’ persistence is maintained over longer periods of time, depending on the
Hurst exponent value. If some time in the past there is a positive increment —
i.e. an increase — it is more likely that there will be an increase in the future,
while a decreasing trend in the past implies the likelihood of a decreasing trend
in the future. In the random walk language, one tends to diffuse faster away
from the origin than in a Brownian motion.

The correlation between past and future increments, C, of the accumulated
departure from the mean was estimated by Feder as®

Cc=2%2H-1_4 (1.6)

which is notably independent of time. The correlation C takes positive values
for persistent fBm, negative values for anti-persistent fBm and is zero for inde-
pendent random events. Since the correlation C is independent of the lag time ¢
in time series, or the number of data N when in a computer simulation of ran-
dom events, the fBm predicts an infinitely long correlation in persistent and
anti-persistent fBm’s.

According to the fBm model, records in time of natural phenomena exhibit
in general a persistent type of fBm. The presence of such infinitely long corre-
lations is in conflict with what is observed in statistical records in time of phys-
ical systems. Any correlations within records in time of physical systems tend
to die off as their temporal separation increases. It is true, on the other hand,
that the Hurst exponent drops off as the size of data set on which it is applied

*Relation (9.16) of Feder (1988).
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increases, as will be discussed later, to reach asymptotically a value in agree-
ment with what Equation (1.4), or (3.1) below, estimates.

The rescaled range analysis is considered as a robust method for investigat-
ing the presence of correlations in random events, whether there are significant
statistical deviations from chance or not, or even if the data obey Gaussian sta-
tistics or not. Triggered by the unusual fBm behavior of natural phenomena,
this work sets out to investigate how the fBm model applies to events generat-
ed by random number generators in psychokinesis tests. In the psychokinesis
tests that will be reported here, the pre-stated conscious intention of the opera-
tor with regard to the test outcome is introduced as a psychophysical parame-
ter. The aim of the present analysis is, therefore, to investigate the type of the
generalized fractional Brownian motion which best fits the statistical behavior
of random numbers generated in psychokinesis.

2. Experimental

The random numbers presented in this work were generated with the use of
two Schmidt electronic random number generators (RNG), machines A & B.
A standard statistical analysis on the data has been published elsewhere (Pal-
likari-Viras, 1997) in the light of the balancing effect idea (Pallikari- Viras,
1993, 1995, 1998), where details of the RNG’s operation can be found. Ma-
chine A operated on the basis of a combination of white noise from a semicon-
ducting diode and a quasi-random bit generated by an 80C39 microprocessor
(Schmidt & Braud, 1993). The statistical distribution of numbers generated by
this machine is expected to be centered about zero with a standard deviation G
=133.1 according to calibration tests (Schmidt & Stapp, 1993). Machine B op-
erated on the basis of a quasi-random algorithm with a PIC16C57 micro-
processor using a DL2416 EEPROM memory chip for storing the data. The al-
gorithm for converting the random bits generated with machine B into random
numbers is identical to Feder’s (1988) computer simulation of the Hurst coin
tossing experiment. The random numbers in the present experiment represent
the difference between the number of heads (1°s) and tails (0’s) in tossing 100
coins N times. The data statistics of these random numbers obey a binomial
distribution of mean zero and standard deviation

o =21[-§ x%x 100 =10

which is twice the standard deviation of the distribution of the heads, or tails,
alone. The data on which the Hurst analysis will be applied constitute four sets
of PK random numbers, their combinations — as will be explained further —
and one randomness test.

The chronological order by which the tests were done is indicated by their
number, in Table 1. Tests # 1 and 2 were done with machine A and tests # 3, 4
and 5 were done with machine B. The identification “intention” in Table 1 de-
scribes the pre-stated intention of the operator in favor of a certain binary out-
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come, whereas “no intention” describes a no pre-stated intention during the
data generation for any of the test outcomes. Within a test both conditions were
altematively applied in regular intervals. In the randomness test, however, data
were generated only under a no-intention condition.

3. Data Analysis

The Hurst exponent H was estimated from the slope of the straight line
which represents the graph log(R/S) vs. log N, as in Equation (1.4):

log(RIS)=log o + Hlog N @3.1)

In a test of a total number of data N, the ratio R/S was estimated according to
relations (1.1)—(1.3), as follows. The set of N, numbers is divided into »
groups, each group containing N = N, /p data, where p takes values from 1 to N,
such that N > 4 is also an integer. One also includes more data points in the
graph, to improve the quality of the data fitting, by selecting such integers p
for which only a very small proportion of the whole data (four data or less) is
excluded from the analysis. The quantity R/S is estimated for each of the v
groups, and their average, R/ S, is then plotted against N in a log—log graph.
The standard deviation of the mean R/ S for the respective N is represented as
error bars in the graphs. For instance, if the total number of data is N, = 1024
this set is divided into two groups each of N = 512 data and the two indepen-
dent values of R/S as well as theiraverage R/S and log(R/ S ) are estimated, for
N =512. Then, the 1024 numbers are divided into four groups of 256 data each
and log(R/ §) is estimated for N = 256. The subdivision of data continues until
one gets 256 groups of four data each and log(R/ §) are as usual estimated for
N =4. The quantity log(R/ S ) is also estimated for the whole data set. A typical
log(R/ S) vs. log N graph is shown in Figure 1. It refers to all the data generated
by machine A under no-intention condition. The parameters o and H in Equa-
tion (3.1) estimated from the linear regression analysis of the data are shown in
Table 1. The R/S analysis was applied on the data obtained on each of the two
conditions in every one of the four tests, plus on the randomness test, as well as
on the new sets formed by their merged data as follows:

(a) The numbers generated under both conditions within each test were
merged and analyzed as one set marked in Table 1 as “intention & no in-
tention,” tests # 1, 2, 3, and 5. It represents all the data generated within a
test.
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TABLE 1
Statistical and Rescaled Range Analysis Parameters

Number Condition Number Mean SD Hurst ol
of Test of Data Exponent®

intention 1024 +6.99 133.24 0.496 £0.012 1.05 £0.03

1 no intention 940 -7.05 134.50 0.606 £0.016 0.77 £0.03
intention &

no intention 1964 +0.27 134.01 0.588 £0.013 0.65 £0.02

intention 482 -4.47 135.12 0.645 +£0.018 0.57 £0.02

2 no intention 482 +3.77 135.52 0.492 +£0.015 1.10 £0.04
intention &

no intention 964 -0.35 135.31 0.545 £0.010 0.88 £0.02

intention 1506 +3.32 133.91 0.566 £0.010 0.83 £0.02

1&2 no intention 1422 -3.38 134.91 0.586 +0.005 0.83 £0.02
intention &

no intention 2928 +0.07 134.42 0.574 £0.009 0.79 £0.02

intention 257 +1.61 9.96 0.551 £0.033 0.80 £0.06

3 no intention 257 +0.16 9.89 0.414 £0.021 1.61 £0.07
intention &

no intention 514 +0.88 9.94 0.573 £0.028 0.78 £0.06

4 randomness test 1026 +0.09 10.01 0.503 £0.008 1.07 £0.02

intention 256 -0.16 10.12 0.73£0.05 0.44 £0.05

5 no intention 256 +0.94 10.03 0.47 £0.04 1.13 £0.09
intention &

no intention 512 +0.39 10.08 0.66 £0.03 0.53 £0.03

intention 513 +0.70 10.07 0.71 £0.03 0.43 £0.02

3&5 no intention 513 +0.55 9.97 0.49 £0.02 1.08 £0.05
intention &

no intention 1026 +0.63 10.01 0.62 £0.01 0.64 £0.02

* Parameters obtained from the linear regression of Equation (3.1), above N =32.

(b)Data generated under the same condition over the two tests with the
same machine were also merged. This combination is marked as 1 & 2
(machine A) and 3 & 5 (machine B) in the column titled “Number of
Test.”

(c) The whole data generated by each of the two machines, A or B, regard-
less of condition was analyzed as one larger set of data. It is marked in
Table 1 as “intention & no intention” under “condition” and “1 & 2 or 3
& 5” under the “# of test” column.

The randomness test data were not involved in the merging because they
were not generated under the same binary intention condition protocol.
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Fig. 1. A typical Hurst graph plotting log() vs. log N, of all data generated by machine A, test# 1
& 2 under no-intention condition. The straight line is a linear regression fit to the data.
The dotted line plots relation (1.5) in the text.

4. Results and Discussion

The R/S analysis done on the individual nine data sets (two machines, two
tests with each machine, two conditions within each test, plus one randomness
test) of random numbers presented here fits Hurst’s empirical equation (1.4).
The Hurst exponent estimated from this analysis indicates the presence of
weak biases within most of the data sets of varying size (from N = 256 to
N =1026) as well as within the ten additional ones of larger size (N = 512 to
N =2928) which resulted from the merging of the initial eight data sets in var-
ious combinations shown in Table 1.

The H parameter varies strongly with N if small subsets of data are consid-
ered, Figure 2, to asymptotically reach a constant value, not necessarily within
a given whole of data. The fBm characterin the set of data is contained collec-
tively in all subgroups of size N in the Hurst analysis procedure, but not ade-
quately within the small size ones as their statistics are not representative in
this case. Therefore, to involve subsets of small size, N, in the data fitting
would overestimate the H parameter and the right size N, above which the data
fitting is performed must be decided. Feder estimated the H parameter of a set
of 50,000 computer simulated random data for N > 20 by using the same com-
plicated fitting procedure we have applied here. The Hurst exponent presented
in Table 1 is estimated in a data fitting for N > 32. In view of the small size of
some data sets, this may have overestimated the H parameter. It should be
pointed out, however, that the value thus estimated agrees with the H
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Fig.2. A plot of the H exponent against the natural logarithm, In N, of the size of data set, N,
for the data of test # 1 under intention condition. The continuous curve represents an
exponential fit to the data.

parameter that would have been obtained from extrapolation if the data set
was as large as a few hundred thousand units, Figure 2.

When weak biases are detected in the Hurst analysis of small data sets it is
not at first easy to decide whether their origin is a biasing agent or if the H pa-
rameter was overestimated in the data fitting procedure. Feder has found, for
instance, that if he included all possible subsets in the analysis of the 50,000
computer simulated random data the H parameter was overestimated by 3%.
An appropriate cut-off N, for the data fitting has to be decided. However, the
effect of the N, value in the estimation of the H parameter is less serious, if
very large size data sets are analyzed with no periodic features in them.

It is advisable in any case to draw conclusions on the fBm character of the
random data not by studying individual experimental data sets, but by compar-
ing them with empirical distributions of H parameters. To fix a certain cut-off
N, calibration data or computer simulations of the random data generation
process can be used. We have simulated the algorithm of machine B and gener-
ated 1000 data sets of 1024 data each twice for two different seed numbers
with the use of a Borland Pascal 7.0 compiler. The average H parameter was
then estimated in a data fitting above an N, for each of the two different seed
numbers, changing N, from 32 to 200 as in Table 2. Changing the seed number
in the pseudo-random process did not seem to affect the H parameter. All the
estimated H parameters were, within one standard deviation of the mean H,
consistent with the theomretical expectation of an independent process. The av-
erage H, however, seems to depend on N,. A lower N, yields a higher H expo-
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TABLE 2
The Hurst Exponent of Computer Simulated Random Number
Sequences for Different Cut-off Sample Sizes N, and Seed Numbers

N, Seed Number H SD
32 101010 0.53 0.05
50 101010 0.52 0.07
100 101010 0.51 0.10
150 101010 0.50 0.13
200 101010 0.50 0.14
32 983 0.53 0.05
50 983 0.53 0.07
100 983 0.52 0.10
150 983 0.51 0.12
200 983 0.51 0.14

nent. Higher cut-offs estimate H exponents as expected by independent data,
but having relatively high standard deviations. The variance of the H parame-
ters is in some cases relatively large and these observed individual runs of bi-
ased data should be considered as the result of chance fluctuations.

The weak biases observed in most of the individual experimental data sets

generated by the two machines, are of the persistent type with the exception of
the no-intention test # 3 which presented an anti-persistent type of bias. The
randomness test is, for the H value, consistent with the theoretical expectation
from independent data. The standard deviation of the H parameter estimated in
the data fitting process varies from test to test. In order to give an overall esti-
mate of the H exponent across tests, the standard deviation should be
taken into account in estimating a weighted average® (Barlow, 1989).
The weighted average of all the nine H parameters is = 0.520 with
SD = 0.005. If the randomness test is excluded from the averaging then, 34
= 0.532 with SD = 0.009 (n = 8). In particular, the four intention data sets
yield a weighted average H parameter, H = 0.549, with SD = 0.009, whereas
the four no-intention data sets yield a weighted average H = 0.515 with a sam-
ple SD = 0.009 in good agreement with an independent random process (or,
H=0.508,SD =0.006 if the randomness test is included in the averaging). A
summary of these results is presented in Table 3.

Comparison of the results of Tables 2 and 3 shows no difference between ex-
perimental data and the simulated data for cut-off N, = 32 and the predominant
persistence found in the data could be assigned to chance fluctuations. It is not
absolutely clear, however, at this point if the estimated weak persistence in the
simulated data is due solely to the selection of the cut-off N, or to periodical
features in the quasi-random process itself. A large number of calibration data
would be helpful in this case. To conclude, on the basis of the data presented

3 with a variance .
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TABLE 3
The Hurst Exponent of the Psychokinesis Experimental Data

Number of Data Sets Weighted Average H* SDP

9 (intention + no int. +random test) 0.520 0.005
8 (int.+no int.) 0.532 0.009
4 (intention) 0.549 0.009
4 (no-intention) 0.515 0.009
5 (no int. + random test) 0.508 0.006

*According to footnote 3 and for N, = 32.
® According to footnote 3.

here and although the average H parameter of intention data is higher than
that of no-intention data, one has to sustain that the weak pesistence is due to
statistical fluctuations and not related to the psychophysical parameter in-
volved in the tests.

5. Studying Periodicities in the Random Data

Periodical features in the random data may be observed on the Hurst graph
showing as deviations from linearity around the corresponding period. In the
Hurst graph of sunspot activity, for instance, an undulation is observed at
about N =11 years (Feder, 1988). This deviation from linearity results from an
irregular change in the rescaled range and standard deviation of the data due to
the periodical feature. The presence of periodicities in the data interfere with
the correct estimation of the H parameter. One cannot rely, therefore, on the
slope of the Hurst graph alone to get a complete picture of the biases in the
data, but the graph as a whole should be considered.

There were undulations in many of the Hurst graphs of data repotted here.
In general this could have resulted from periodicities related either to the psy-
chophysical variable introduced, or to the biases inherent in the random gener-
ation process. Since there was no clear connection between the psychophysi-
cal parameter introduced in this work and the presence of periodicities, we
shall have to assume that their presence is due to the latter case. Although this
is not a problem that can be solved here, the advantages of this application to
the investigation of present periodicities are presented. An extended study on
this topic and the interpretation of the periodical features is intended for future
work.

In Figure 3, for instance, the Hurst graph of all the data generated by ma-
chine A is shown. An undulation is observed at about N = 450. This periodical
feature is not present in the graph of Figure 1, where the subset of the data
generated by the same machine under the no-intention condition is plotted.
However, the Hurst graph of the intention subset of data, generated by ma-
chine A, shows a very weak undulation at about N = 450, Figure 4. If this peri-
odicity were more prominent it would have implied a possible connection with
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Fig.3. The Hurst graph of the whole data generated by machine A. The straight line is a linear re-
gression fit to the data. The dotted line plots relation (1.5) in the text.
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Fig.4. The Hurst graph of all data generated by machine A under intention condition. The
straight line is a linear regression fit to the data. The dotted line plots relation (1.5) in the
text.

the psychophysical parameter introduced. It should be reminded, however,
that the majority of data sets presented here are not showing significant statis-
tical deviations of data averages from chance, with the exception of test #3
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intention at a 0.01 level of significance. This is an individual case and together
with the other data it may simply be the result of chance fluctuations in the
random process.

In an attempt to shed some light on the issue of periodicities, one of us
(E.B.) programmed the computer to introduce a variety of biases into the orig-
inal randomness test data. There were three types of biases introduced, a sinu-
soidal bias, a point bias, and a data correlation bias. In the sinusoidal bias, a
term
x was added to the original data of a size which varied according to the
expression

x=A sin[n %}I G.1)

that is, having a period of N = 2B and an amplitude A, Figure 5, where
B =20 1in Figure 5a and 80 in Figure 5b, while A = 10 in both cases. The effect
of the sine bias on the original data is seen to start at about a data size equal to
a quarter of a period, while structures appear in the graph at data sizes equal to
multiples of the period. A small period sine bias introduces anti-persistence in
the original data, while a long period introduces persistence. The Hurst analy-
sis of the biased data is shown in Table 4. Additional information about the
value of one standard deviation of the data fitting procedure and the respective
correlation estimated, indicating the quality of fitting, are presented.

As an example of the effect of a point bias, a constant number of size 50
added after every 30 (Figure 6a) and every 10 (Figure 6b) of the original data is
shown. The actual effect of the point bias on the original data was only to in-
troduce anti-persistence and that was observed for a large range of lengths of

2 :
T 0,81 -~
s 7] }/
0,6 1 §
|
0]
0,0 T T T T T T T T T T
0,5 1.0 1,5 2,0 25 3,0
logN

Fig. 5a.
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Fig. 5. The Hurst graph of randomness test data (W) and artificially biased data (Q)with an added
sinusoidal term of amplitude 10 according to relation (5.1) for (a) a period 40 and (b) a pe-
riod 160.

TABLE 4
Effect of Artificial Biasing on the Hurst Exponent of a Sequence of Random Numbers

File H SD R
Original random data 0.503 0.008 0.996
Biased. Sine-20-10 0.314 0.023 0.953
Biased. Sine 80-10 0.791 0.067 0.937
Biased. Point 10-50 0.499 0.009 0.997
Biased. Point 30-50 0.480 0.011 0.995
Biased. Correlated 0.995 0.019 0.997

data intervals and magnitudes of bias. Finally, the original data x were trans-
formed according to

n
X, = >.x; —nx (5.2)
i=1

The correlated data x" are plotted in the Hurst graph of Figure 7. This type of
biasing introduces persistence.

A persistence observed in psychokinesis data on the basis of the above re-
sults could be associated with introduced biases correlating them collectively
rather than sporadically. The nature of persistence in the data accumulated
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Fig. 6. The Hurst graph of randomness test data (M) and biased randomness test (Q) data by
adding the number 50 (a) every 30 data points and (b) every 10 data points.

departure from the mean, implies a quality of a Jungian synchronicity (Jung,
1997) in the temporal sequences of random data. A synchronous trend can be
consistent with absence of significant statistical deviations of averages from
chance expectations. Random data may fluctuate about their theowretical aver-
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Fig. 7. The Hurst graph of randomness test data (M) and biased randomness test (Q) data by cor-
relating the data according to the relation (5.2).

ages to yield an overall non-statistically significant shift but may indicate, on
the other hand, a tendency to cluster similar events in psychokinesis data in
connection with the psychophysical parameter introduced.

6. Conclusions

It was shown that the rescaled range analysis done on sets of PK-RNG data
provides an alternative source of information for tracing biases and investigat-
ing periodical features within the data. Most of the data presented here were
found weakly biased having a trend of pemsistence in the accumulated depar-
ture from the mean, according to the fractional Brownian motion model, fBm.
However, it was not obvious and conclusive, whether such weak biases were
associated with the psychophysical parameter intioduced in the PK tests or
simply the result of chance fluctuations. It was shown, by introducing artificial
biases in the data, that a persistent fBm indicates a data correlation in the
whole of random units rather than a selective biasing of some of them.

Within its limitations the rescaled range analysis offers an alternative
method for studying PK-RNG data. The information gained by its application
may stimulate new models, give a deeper insight into the psychokinesis
process and, more importantly, trigger new experimental techniques.
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