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A b stract — The res c a l ed range st a t ist ical analysis was applied on sets of ran-
dom numbers to demonstrate its potential in st u d y ing various types of biases
and the presence of pe r i o d ical features. The data were generated by electro n-
ic random number generators in psychokin es is tests. Accord ing to the th e o ry
of Hurst, the res c a l ed range of in d e pendent random data is prop o rtional to th e
s q u a re root of their number.  In data which are not in d e pendent, the fractional
Brownian motion model of Mandelbrot is useful in modeling their time series
as pe rs istent or anti-pe rs istent. A weak pred o m inantly pe rs istent type of frac-
tional Brownian motion in the data in d ic a t ed a bias which could not be dist in-
g u is h ed from chance fluctuations after comp a r ison wi th computer simula t ed
data. The basic steps for the application of this method, the variety of in fo r-
mation it can provide and its limitations are dis c u s s ed. The method prov i d es
a re la t i vely simple, yet ro b u st, technique for st u d y ing ano m a l i es in random
e ve n t s .

K e y w o rd s : a no m a l i es — fractional Brownian motion — Hurst exponent — 
pe r i o d ic i t i es — psychokin es is —  res c a l ed range analysis 

1. Introduction

Science is often confro n t ed wi th puzzles which stay unsolved for lo ng pe r i o d s
of time, one of th ese being the Hurst effect (Fed e r, 1988). The effect has been
initially observed in sequences of re c o rds in time, x(t), of natural pheno m e n a
such as river dis c h a rg es, which were expe c t ed to be in d e pendent over lo ng pe-
riods of time. Hurst, in his analysis, first transfo rm ed the natural re c o rds in
time into a new variable X(t , N), the so-called accumula t ed depart u re of th e
natural re c o rd in time in a given year t (t = 1, 2, ..., N), from the ave r a g e , x̄(t) ,
over a period of N y e a rs (Hurst, 1951; Korv in, 1992). The transfo rmation fo l-
lows the fo rm u la
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Then, he in t ro d u c ed the res c a l ed range R/S, in which the range R(N) is def in ed
b y

and the st a n d a rd deviation S(N) by

Wi th the use of the dimensionless res c a l ed range, Hurst was able to comp a re
natural phenomena of various kinds. He found, then, that the natural pheno m-
ena he st u d i ed fo l low ed the emp i r ical la w

w h e re the Hurst exponent H — called K by Hurst — was more or less symmet-
r ically dist r i b u t ed about a mean 0.73 wi th a st a n d a rd deviation (SD) of about
0.09. Alth o u gh this value was slightly ove rest i m a t ed due to the small number
of available data for cert a in phenomena, Hurst was able to re p roduce the re la-
tion (1.4) by using  simulations of biased random events. He derived the re la-
tion (1.5) below, which the res c a l ed range parameter should fo l low for tru l y
u n b i a s ed events, and was able to show that his own simulations of unbiased
random events obeyed it:

T his re lation was also derived and dis c u s s ed by Feller (1951) and later con-
f i rm ed by Feder (1988) by a computer simulation of random eve n t s .

H u rst’s simulations of in d e pendent random pro c es s es (1951) were done by
t o s s ing n ( = 10) coins N ( = 1000) times and taking the random variable x to be
the number of heads minus the number of tails. It is worth poin t ing out, as it
will be dis c u s s ed la t e r, that the random variable in this simulation can be re p re-
s e n t ed by the net dis p lacement of a part icle underg o ing a typical random walk
on a line where the part icle moves in steps of equal leng th either to the left or to
the right at equal pro b a b i l i t y. Feder has, how e ve r, shown that the position in
time, x(t), of a part icle that walks at random wi th steps of unit leng th on a lin e
b e c o m es asymp t o t ically an ord in a ry Brownian motion wi th a Gaussian dist r i b-
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ution of step leng ths for time scales much la rger than the time between st e p s
and for dist a n c es much la rger than the unit step leng th. The variable X(t, N) of
Equation (1.1) re p resents, in fact, the position of the part icle which makes
steps x(t) away from the origin .

M a n d e l b rot later in t ro d u c ed a generalized fo rm of the Brownian motion
model, the fractional Brownian motion, fBm, to model the Hurst effect (Man-
d e l b rot & Van Ness, 1968; Mandelbrot, 1982). In the fBm model the Hurst ex-
ponent, as shown in re lation (1.4), is a real number in the range 0 < H < 1.
T h e re are th ree types of generalized fBm: (a) the pe rs istent, for values of H in
the range 0.5 < H < 1, (b) the anti-pe rs istent, for 0 < H < 0.5, and (c) the case
H = 0.5 which corresponds to the in d e pendent white no ise pro c es s es of ord i-
n a ry Brownian motion.

A c c o rd ing to Mandelbrot, to be anti-pe rs istent is to tend to turn back tow a rd
the point one came from or,  in terms of the random walk pic t u re, to diff u s e
s lower than in the ord in a ry Brownian motion. Any in c re a s ing trend in the past
m a k es a decre a s ing trend in the future more probable, and v ice vers a , th e
st re ng th of this anti-corre lation depe n d ing on how much lower than 0.5 the H
parameter is. The other type of fBm, the pe rs istent, imp l i es that the in c re-
ments’ pe rs istence is main t a in ed over lo nger periods of time, depe n d ing on th e
H u rst exponent value. If some time in the past th e re is a positive in c rement —
i . e . an in c rease — it is more likely that th e re will be an in c rease in the future ,
w hile a decre a s ing trend in the past imp l i es the likelihood of a decre a s ing tre n d
in the future. In the random walk la nguage, one tends to diffuse faster away
f rom the origin than in a Brownian motion.

The corre lation between past and future in c rements, C , of the accumula t ed
d e p a rt u re from the mean was est i m a t ed by Feder as2

w hich is notably in d e pendent of time. The corre lation C t a k es positive values
for pe rs istent fBm, negative values for anti-pe rs istent fBm and is zero for in d e-
pendent random events. Since the corre lation C is in d e pendent of the lag time t
in time series, or the number of data N when in a computer simulation of ran-
dom events, the fBm pred icts an in f initely lo ng corre lation in pe rs istent and
a n t i - pe rs istent fBm’s .

A c c o rd ing to the fBm model, re c o rds in time of natural phenomena exhi b i t
in general a pe rs istent type of fBm. The presence of such in f initely lo ng corre-
lations is in confl ict wi th what is observed in st a t ist ical re c o rds in time of phys-
ical systems. Any corre lations wi thin re c o rds in time of physical systems tend
to die off as their temporal separation in c re a s es. It is true, on the other hand,
that the Hurst exponent drops off as the size of data set on which it is applied

C = 22 H - 1 - 1                                           (1.6)
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in c re a s es, as will be dis c u s s ed la t e r, to reach asymp t o t ically a value in agre e-
ment wi th what Equation (1.4), or (3.1) below, est i m a t es .

The res c a l ed range analysis is considered as a ro b u st method for in vest i g a t-
ing the presence of corre lations in random events, whether th e re are signific a n t
st a t ist ical deviations from chance or not, or even if the data obey Gaussian st a-
t ist ics or not. Tr i g g e red by the unusual fBm behavior of natural pheno m e n a ,
this work sets out to in vestigate how the fBm model applies to events generat-
ed by random number generators in psychokin es is tests. In the psychokin es is
t ests that will be re p o rt ed here, the pre - st a t ed conscious intention of the ope r a-
tor wi th re g a rd to the test outcome is in t ro d u c ed as a psychop h y s ical parame-
t e r. The aim of the present analysis is, th e refo re, to in vestigate the type of th e
g e n e r a l i z ed fractional Brownian motion which best fits the st a t ist ical behavior
of random numbers generated in psychokin es is .

2. Experimental

The random numbers pres e n t ed in this work were generated wi th the use of
two Schmidt electro n ic random number generators (RNG), machin es A & B.
A st a n d a rd st a t ist ical analysis on the data has been publis h ed elsewhere (Pal-
l i k a r i - Viras, 1997) in the light of the bala n c ing effect idea (Pallikari-Vi r a s ,
1993, 1995, 1998), where details of the RNG’s operation can be found. Ma-
c hine A ope r a t ed on the basis of a combination of white no ise from a semic o n-
d u c t ing diode and a quasi-random bit generated by an 80C39 mic rop ro c es s o r
(Schmidt & Braud, 1993). The st a t ist ical distribution of numbers generated by
this machine is expe c t ed to be centered about zero wi th a st a n d a rd deviation s
= 133.1 accord ing to calibration tests (Schmidt & Stapp, 1993). Machine B op-
e r a t ed on the basis of a quasi-random algorithm wi th a PIC16C57 mic ro-
p ro c essor using a DL2416 EEPROM memory chip for st o r ing the data. The al-
g o r i thm for conve rt ing the random bits generated wi th machine B into random
n u m b e rs is identical to Fed e r’s (1988) computer simulation of the Hurst coin
t o s s ing experiment. The random numbers in the present experiment re p res e n t
the diff e rence between the number of heads (1’s) and tails (0’s) in tossing 10 0
c o ins N t i m es. The data st a t ist ics of th ese random numbers obey a bino m i a l
d istribution of mean zero and st a n d a rd deviation

w hich is twice the st a n d a rd deviation of the distribution of the heads, or tails,
a lone. The data on which the Hurst analysis will be applied constitute four sets
of PK random numbers, their combinations — as will be expla in ed further —
and one randomn ess test .

The chro no lo g ical order by which the tests were done is in d ic a t ed by th e i r
n u m b e r, in Table 1. Tests # 1 and 2 were done wi th machine A and tests # 3, 4
and 5 were done wi th machine B. The identification “intention” in Table 1 de-
s c r i b es the pre - st a t ed intention of the operator in favor of a cert a in bin a ry out-

s = 2 1
2 ´ 1

2 ´ 100 = 10



come, whereas “no intention” des c r i b es a no pre - st a t ed intention during th e
data generation for any of the test outcomes. Wi thin a test both conditions were
a l t e rn a t i vely applied in re g u lar in t e rvals. In the randomn ess test, how e ve r, data
w e re generated only under a no - intention condition.

3. Data Analysis

The Hurst exponent H was est i m a t ed from the slope of the st r a i ght lin e
w hich re p resents the graph lo g (R/S) vs. log N, as in Equation (1.4):

In a test of a total number of data Nt, the ratio R/S was est i m a t ed accord ing to
re lations (1.1) - (1.3), as fo l lows. The set of Nt n u m b e rs is divided into v
g roups, each group contain ing N = N t /v data, where v t a k es values from 1 to Nt

such that N ³  4 is also an in t e g e r. One also in c l u d es more data points in th e
graph, to imp rove the quality of the data fitting, by selecting such in t e g e rs v
for which only a ve ry small prop o rtion of the whole data (four data or less) is
e x c l u d ed from the analysis. The quantity R / S is est i m a t ed for each of the v
g roups, and their average, R/ S , is  then plo t t ed again st N in a lo g - log graph.
The st a n d a rd deviation of the mean R/ S for the res pe c t i ve N is re p res e n t ed as
e rror bars in the graphs. For in stance, if the total number of data is Nt = 10 2 4
this set is divided into two groups each of N = 512 data and the  two in d e pe n-
dent values of R/S as well as their average R/ S and lo g (R/ S ) are est i m a t ed, fo r
N = 512. Then, the 1024 numbers are divided into four groups of 256 data each
and lo g (R/ S ) is est i m a t ed for N = 256. The subdivision of data contin u es until
one gets 256 groups of four data each and lo g (R/ S ) are as usual est i m a t ed fo r
N = 4. The quantity lo g (R/ S ) is also est i m a t ed for the whole data set. A typic a l
lo g (R/ S ) vs. log N graph is shown in Figure 1. It ref e rs to all the data generated
by machine A under no - intention condition. The parameters a and H in Equa-
tion (3.1) est i m a t ed from the linear re g ression analysis of the data are shown in
Table 1. The R/S a n a l y s is was applied on the data obtain ed on each of the two
conditions in eve ry one of the four tests, plus on the randomn ess test, as well as
on the new sets fo rm ed by their merg ed data as fo l low s :

( a ) The numbers generated under both conditions wi thin each test were
m e rg ed and analyz ed as one set marked in Table 1 as “intention & no in-
tention,” tests # 1, 2, 3, and 5. It re p resents all the data generated wi thin a
t est .

log R S( )= log a + H log N                                 (3.1)
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( b )Data generated under the same condition over the two tests wi th th e
same machine were also merg ed. This combination is marked as 1 & 2
( m a c hine A) and 3 & 5 (machine B) in the column titled “Number of
Test . ”

( c ) The whole data generated by each of the two machin es, A or B, re g a rd-
l ess of condition was analyz ed as one la rger set of data. It is marked in
Table 1 as “intention & no intention” under “condition” and “1 & 2 or 3
& 5” under the “# of test” column .

The randomn ess test data were not in v o l ved in the merg ing because th e y
w e re not generated under the same bin a ry intention condition pro t o c o l .

TABLE 1
S t a t ist ical and Res c a l ed Range Analysis Parameters

N u m b e r C o n d i t i o n N u m b e r M e a n S D H u rst a a

of Test of Data E x p o n e n ta

in t e n t i o n 10 2 4 + 6 . 9 9 1 3 3 . 2 4 0.496 + 0 . 0 1 2 1.05 + 0 . 0 3
1 no in t e n t i o n 9 4 0 – 7 . 0 5 1 3 4 . 5 0 0.606 + 0 . 0 1 6 0.77 + 0 . 0 3

intention &
no in t e n t i o n 1 9 6 4 + 0 . 2 7 1 3 4 . 0 1 0.588 + 0 . 0 1 3 0.65 + 0 . 0 2

in t e n t i o n 4 8 2 – 4 . 4 7 1 3 5 . 1 2 0.645 + 0 . 0 1 8 0.57 + 0 . 0 2
2 no in t e n t i o n 4 8 2 + 3 . 7 7 1 3 5 . 5 2 0.492 + 0 . 0 1 5 1 . 10 + 0 . 0 4

intention &
no in t e n t i o n 9 6 4 – 0 . 3 5 1 3 5 . 3 1 0.545 + 0 . 0 10 0.88 + 0 . 0 2

in t e n t i o n 1 5 0 6 + 3 . 3 2 1 3 3 . 9 1 0 . 566 + 0 . 0 10 0.83 + 0 . 0 2
1 & 2 no in t e n t i o n 1 4 2 2 – 3 . 3 8 1 3 4 . 9 1 0.586 + 0 . 0 0 5 0.83 + 0 . 0 2

intention & 
no in t e n t i o n 2 9 2 8 + 0 . 0 7 1 3 4 . 4 2 0.574 + 0 . 0 0 9 0.79 + 0 . 0 2

in t e n t i o n 2 5 7 + 1 . 6 1 9 . 9 6 0.551 + 0 . 0 3 3 0.80 + 0 . 0 6
3 no in t e n t i o n 2 5 7 + 0 . 1 6 9 . 89 0.414 + 0 . 0 2 1 1.61 + 0 . 0 7

intention & 
no in t e n t i o n 5 1 4 + 0 . 8 8 9 . 9 4 0.573 + 0 . 0 2 8 0 . 78 + 0 . 0 6

4 r a n d o mn ess test 10 2 6 + 0 . 0 9 10 . 0 1 0.503 + 0 . 0 0 8 1.07 + 0 . 0 2

in t e n t i o n 2 56 – 0 . 1 6 10 . 1 2 0.73 + 0 . 0 5 0.44 + 0 . 0 5
5 no in t e n t i o n 2 56 + 0 . 9 4 10 . 0 3 0.47 + 0 . 0 4 1.13 + 0 . 0 9

intention & 
no in t e n t i o n 5 1 2 + 0 . 3 9 10 . 0 8 0.66 + 0 . 0 3 0.53 + 0 . 0 3

in t e n t i o n 5 1 3 + 0 . 7 0 10 . 0 7 0.71 + 0 . 0 3 0.43 + 0 . 0 2
3 & 5 no in t e n t i o n 5 1 3 + 0 . 5 5 9 . 9 7 0.49 + 0 . 0 2 1.08 + 0 . 0 5

intention & 
no in t e n t i o n 10 2 6 + 0 . 6 3 10 . 0 1 0.62 + 0 . 0 1 0.64 + 0 . 0 2

a P a r a m e t e rs obtain ed from the linear re g ression of Equation (3.1), above N = 3 2 .



4. Results and Discussion

The R/S a n a l y s is done on the individual nine data sets (two machin es, two
t ests wi th each machine, two conditions wi thin each test, plus one randomn es s
t est) of random numbers pres e n t ed here fits Hurst ’s emp i r ical equation (1.4).
The Hurst exponent est i m a t ed from this analysis in d ic a t es the presence of
weak biases wi thin most of the data sets of vary ing size (from N = 256 to 
N = 1026) as well as wi thin the ten additional ones of la rger size (N = 512 to 
N = 2928) which res u l t ed from the merg ing of the initial eight data sets in var-
ious combinations shown in Table 1.

The H parameter varies st ro ngly wi th N if small subsets of data are consid-
e red, Figure 2, to asymp t o t ically reach a constant value, not necessarily wi thin
a given whole of data. The fBm character in the set of data is contain ed collec-
t i vely in all subgroups of size N in the Hurst analysis pro c ed u re, but not ade-
quately wi thin the small size ones as their st a t ist ics are not re p res e n t a t i ve in
this case. Therefo re, to in v o l ve subsets of small size, N, in the data fitting
would ove restimate the H parameter and the right size Nc a b ove which the data
f i t t ing is pe rfo rm ed must be decided. Feder est i m a t ed the H parameter of a set 
of 50,000 computer simula t ed random data for N > 20 by using the same com-
p l ic a t ed fitting pro c ed u re we have applied here. The Hurst exponent pres e n t ed
in Table 1 is est i m a t ed in a data fitting for N > 32. In view of the small size of
some data sets, this may have ove rest i m a t ed the H p a r a m e t e r. It should be
p o in t ed out, how e ve r, that the value thus est i m a t ed agre es wi th the H

A n a l y s is of Random Eve n t s 3 1

Fig. 1. A typical Hurst graph plo t t ing lo g () vs. log N , of all  data generated by machine A, test # 1
& 2 under no - intention condition. The st r a i ght line is a linear re g ression fit to the data.
The dotted line plots re lation (1.5) in the text.
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parameter that would have been obtain ed from extrapolation if the data set
was as la rge as a few hundred thousand units, Figure 2.

When weak biases are detected in the Hurst analysis of small data sets it is
not at first easy to decide whether their origin is a biasing agent or if the H p a-
rameter was ove rest i m a t ed in the data fitting pro c ed u re. Feder has found, fo r
in stance, that if he in c l u d ed all possible subsets in the analysis of the 50,000
c o mputer simula t ed random data the H parameter was ove rest i m a t ed by 3%.
An appropriate cut-off Nc for the data fitting has to be decided. How e ve r, th e
effect of the Nc value in the estimation of th e H parameter is less serious, if
ve ry la rge size data sets are analyz ed wi th no pe r i o d ic features in th e m .

It is advisable in any case to draw conclusions on the fBm character of th e
random data not by st u d y ing individual experimental data sets, but by comp a r-
ing them wi th emp i r ical distributions of H p a r a m e t e rs. To fix a cert a in cut-off
Nc calibration data or computer simulations of the random data generation
p ro c ess can be used. We have simula t ed the algorithm of machine B and gener-
a t ed 1000 data sets of 1024 data each twice for two diff e rent seed numbers
wi th the use of a Borland Pascal 7.0 comp i l e r. The average H parameter was
then est i m a t ed in a data fitting above an Nc, for each of the two diff e rent seed
n u m b e rs, chang ing Nc f rom 32 to 200 as in Table 2. Chang ing the seed number
in the pseudo-random pro c ess did not seem to affect the H p a r a m e t e r. All th e
est i m a t ed H p a r a m e t e rs were, wi thin one st a n d a rd deviation of the mean H,
c o n s istent wi th the th e o re t ical expectation of an in d e pendent pro c ess. The av-
erage H, how e ve r, seems to depend on Nc. A lower Nc yields a hi gher H e x p o-

Fig. 2. A plot of the H exponent again st the natural lo g a r i thm, ln N, of the size of data set, N ,
for the data of test  # 1 under intention condition. The continuous curve re p resents an
exponential fit to the data.



nent. Higher cut-offs estimate H exponents as expe c t ed by in d e pendent data,
but having re la t i vely hi gh st a n d a rd deviations. The variance of the H p a r a m e-
t e rs is in some cases re la t i vely la rge and th ese observed individual runs of bi-
a s ed data should be considered as the result of chance fl u c t u a t i o n s .

The weak biases observed in most of the individual experimental data sets
g e n e r a t ed by the two machin es, are of the pe rs istent type wi th the exception of
the no - intention test # 3 which pres e n t ed an anti-pe rs istent type of bias. The
r a n d o mn ess test is, for the H value, consistent wi th the th e o re t ical expe c t a t i o n
f rom in d e pendent data. The st a n d a rd deviation of the H parameter est i m a t ed in
the data fitting pro c ess varies from test to test. In order to give an overall est i-
mate of the H exponent across tests, the st a n d a rd deviation should be
taken into account in est i m a t ing a weigh t ed ave r a g e3 ( B a r low, 1989 ) .
The weigh t ed average of all the nine H p a r a m e t e rs is = 0.520 wi th 
SD = 0.005. If the randomn ess test is excluded from the ave r a g ing then, 3 4
= 0 . 5 3 2 wi th SD = 0.009 (n = 8). In part ic u la r, the four intention data sets

yield a weigh t ed average H p a r a m e t e r, H = 0.549, wi th SD = 0.009, where a s
the four no - intention data sets yield a weigh t ed average H = 0.515 wi th a sam-
ple SD = 0.009 in good agreement wi th an in d e pendent random pro c ess (or, 
H = 0.508 , SD  = 0.006 if the randomn ess test is in c l u d ed in the ave r a g ing). A
s u m m a ry of th ese results is pres e n t ed in Table 3.

C o mp a r ison of the results of Ta b l es 2 and 3 shows no diff e rence between ex-
perimental data and the simula t ed data for cut-off Nc = 32 and the pred o m in a n t
pe rs istence found in the data could be assigned to chance fluctuations. It is no t
absolutely clear, how e ve r, at this point if the est i m a t ed weak pe rs istence in th e
s i m u la t ed data is due solely to the selection of the cut-off Nc or to pe r i o d ic a l
f e a t u res in the quasi-random pro c ess itself. A la rge number of calibration data
would be helpful in this case. To conclude, on the basis of the data pres e n t ed

A n a l y s is of Random Eve n t s 3 3

3 wi th a variance .

TABLE 2
The Hurst Exponent of Computer Simula t ed Random Number

S e q u e n c es for Diff e rent Cut-off  Sample Sizes Nc and Seed Numbers

Nc S e ed Number H S D

3 2 10 10 10 0 . 5 3 0 . 0 5
5 0 10 10 10 0 . 5 2 0 . 0 7

10 0 10 10 10 0 . 5 1 0 . 10
1 5 0 10 10 10 0 . 5 0 0 . 1 3
2 0 0 10 10 10 0 . 5 0 0 . 1 4

3 2 9 8 3 0 . 5 3 0 . 0 5
5 0 9 8 3 0 . 5 3 0 . 0 7

10 0 9 8 3 0 . 5 2 0 . 10
1 5 0 9 8 3 0 . 5 1 0 . 1 2
2 0 0 9 8 3 0 . 5 1 0 . 1 4
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h e re and alth o u gh the average H parameter of  intention  data is hi gher th a n
that of no - intention data, one has to sust a in that the weak pe rs istence is due to
st a t ist ical fluctuations and not re la t ed to the psychop h y s ical parameter in-
v o l ved in the test s .

5. Studying Periodicities in the Random Data

P e r i o d ical features in the random data may be observed on the Hurst graph
s h owing as deviations from linearity around the corres p o n d ing period. In th e
H u rst graph of sunspot activity, for in stance, an undulation is observed at
about N = 11 years (Fed e r, 1988). This deviation from linearity results from an
i rre g u lar change in the res c a l ed range and st a n d a rd deviation of the data due to
the pe r i o d ical feature. The presence of pe r i o d ic i t i es in the data in t e rf e re wi th
the correct estimation of the H p a r a m e t e r. One cannot re l y, th e refo re, on th e
s lope of the Hurst graph alone to get a complete pic t u re of the biases in th e
data, but the graph as a whole should be considered .

T h e re were undulations in many of the Hurst graphs of data re p o rt ed here .
In general this could have res u l t ed from pe r i o d ic i t i es re la t ed either to the psy-
c h op h y s ical variable in t ro d u c ed, or to the biases in h e rent in the random gener-
ation pro c ess. Since th e re was no clear connection between the psychop h y s i-
cal  parameter in t ro d u c ed in this work and the presence of pe r i o d ic i t i es, we
shall have to assume that their presence is due to the latter case. Alth o u gh this
is not a problem that can be solved here, the advantages of this application to
the in vestigation of present pe r i o d ic i t i es are pres e n t ed. An extended study on
this top ic and the in t e r p retation of the pe r i o d ical features is in t e n d ed for future
w o r k.

In Figure 3, for in stance, the Hurst graph of all the data generated by ma-
c hine A is shown. An undulation is observed at about N = 450. This pe r i o d ic a l
f e a t u re is not present in the graph of Figure 1, where the subset of the data
g e n e r a t ed by the same machine under the no - intention condition is plo t t ed .
H ow e ve r, the Hurst graph of the intention subset of data, generated by ma-
c hine A, shows a ve ry weak undulation at about N = 450, Figure 4. If this pe r i-
o d icity were more pro m inent it would have imp l i ed a possible connection wi th

TABLE 3
The Hurst Exponent of  the Psychokin es is Experimental Data

Number of Data Sets We i gh t ed Average Ha S Db

9 (intention + no int. +random test ) 0 . 5 2 0 0 . 0 0 5
8 (in t .+ no in t . ) 0 . 5 3 2 0 . 0 0 9
4 (in t e n t i o n ) 0 . 5 4 9 0 . 0 0 9
4 (no - in t e n t i o n ) 0 . 5 1 5 0 . 0 0 9
5 (no int. + random test ) 0 . 5 0 8 0 . 0 0 6

aA c c o rd ing to fo o t note 3 and for Nc = 32.
b A c c o rd ing to fo o t note 3.



the psychop h y s ical parameter in t ro d u c ed. It should be re m in d ed, how e ve r,
that the majority of data sets pres e n t ed here are not showing significant st a t is-
t ical deviations of data ave r a g es from chance, wi th the exception of test #3
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Fig. 3. The Hurst graph of the whole data  generated by machine A. The st r a i ght line is a linear re-
g ression fit to the data. The dotted line plots re lation (1.5) in the text.

Fig. 4. The Hurst graph of all data generated by machine A under intention condition. The
st r a i ght line is a linear re g ression fit to the data. The dotted line plots re lation (1.5) in th e
t e x t .
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intention at a 0.01 level of significance. This is an individual case and togeth e r
wi th the other data it may simply be the result of chance fluctuations in th e
random pro c es s .

In an attempt to shed some light on the issue of pe r i o d ic i t i es, one of us
(E.B.) pro g r a m m ed the computer to in t roduce a variety of biases into the orig-
inal randomn ess test data. There were th ree types of biases in t ro d u c ed, a sin u-
soidal bias, a point bias, and a data corre lation bias. In the sinusoidal bias, a
t e rm 
x was added to the original data of a size which varied accord ing to the 
e x p res s i o n

that is, having a period of N = 2B and an amplitude A, Figure 5, where 
B = 20 in Figure 5a and 80 in Figure 5b, while A = 10 in both cases. The eff e c t
of the sine bias on the original data is seen to st a rt at about a data size equal to
a quarter of a period, while st ru c t u res appear in the graph at data sizes equal to
m u l t i p l es of the period. A small period sine bias in t ro d u c es anti-pe rs istence in
the original data, while a lo ng period in t ro d u c es pe rs istence. The Hurst analy-
s is of the biased data is shown in Table 4. Additional in fo rmation about th e
value of one st a n d a rd deviation of the data fitting pro c ed u re and the res pe c t i ve
c o rre lation est i m a t ed, in d ic a t ing the quality of fitting, are pres e n t ed .

As an example of the effect of a point bias, a constant number of size 50
a d d ed after eve ry 30 (Figure 6a) and eve ry 10 (Figure 6b) of the original data is
s h own. The actual effect of the point bias on the original data was only to in-
t roduce anti-pe rs istence and that was observed for a la rge range of leng ths of

x = A sin p
N

B
æ  
è  
ç  ö 

ø  
÷                                   5.1( )

Fig. 5a.



data in t e rvals and magnitudes of bias. Fin a l l y, the original data x w e re trans-
fo rm ed accord ing to 

The corre la t ed data x¢ a re plo t t ed in the Hurst graph of Figure 7. This type of
b i a s ing in t ro d u c es pe rs ist e n c e .

A pe rs istence observed in psychokin es is data on the basis of the above re-
sults could be associated wi th in t ro d u c ed biases corre la t ing them collective l y
r a ther than sporadic a l l y. The nature of pe rs istence in the data accumula t ed

¢  x n = xi
i=1

n
å - nx                                    5.2( )
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Fig. 5b.

Fig. 5. The Hurst graph of randomn ess test data ( ) and art i f icially biased data ( )wi th an added
s inusoidal term of amplitude 10 accord ing to re lation (5.1) for (a) a period 40 and (b) a pe-
riod 160.

TABLE 4
E ffect of Art i f icial Biasing on the Hurst Exponent of a Sequence of Random Numbers

F i l e H S D R

O r i g inal random data 0 . 5 0 3 0 . 0 0 8 0 . 9 9 6
B i a s ed. Sin e - 2 0 - 10 0 . 3 1 4 0 . 0 2 3 0 . 9 5 3
B i a s ed. Sine 80-10 0 . 7 9 1 0 . 0 6 7 0 . 9 3 7
B i a s ed. Point 10 - 5 0 0 . 4 9 9 0 . 0 0 9 0 . 9 9 7
B i a s ed. Point 30-50 0 . 4 8 0 0 . 0 1 1 0 . 9 9 5
B i a s ed. Corre la t ed 0 . 9 9 5 0 . 0 1 9 0 . 9 9 7
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d e p a rt u re from the mean, imp l i es a quality of a Jungian synchro n icity (Jung ,
1997) in the temporal sequences of random data. A synchro nous trend can be
c o n s istent wi th  absence of significant st a t ist ical deviations of ave r a g es fro m
chance expectations. Random data may fluctuate about their th e o re t ical ave r-

.
Fig. 6b.

Fig. 6. The Hurst graph of randomn ess test data ( ) and biased randomn ess test ( ) data by
a d d ing the number 50 (a) eve ry 30 data points and (b) eve ry 10 data poin t s .

Fig. 6a.



a g es to yield an overall no n - st a t ist ically significant shift but may in d icate, on
the other hand, a tendency to cluster similar events in psychokin es is data in
connection wi th the psychop h y s ical parameter in t ro d u c ed .

6. Conclusions

It was shown that the res c a l ed range analysis done on sets of PK-RNG data
p rov i d es an altern a t i ve source of in fo rmation for tracing biases and in vest i g a t-
ing pe r i o d ical features wi thin the data. Most of the data pres e n t ed here were
found weakly biased having a trend of pe rs istence in the accumula t ed depar-
t u re from the mean, accord ing to the fractional Brownian motion model, fBm.
H ow e ve r, it was not obvious and conclusive, whether such weak biases were
a s s o c i a t ed wi th the psychop h y s ical parameter in t ro d u c ed in the PK tests or
s i mply the result of chance fluctuations. It was shown, by in t ro d u c ing art i f ic i a l
b i a s es in the data, that a pe rs istent fBm in d ic a t es a data corre lation in th e
whole of random units rather than a selective biasing of some of th e m .

Wi thin its limitations the res c a l ed range analysis off e rs an altern a t i ve
m e thod for st u d y ing PK-RNG data. The in fo rmation gain ed by its applic a t i o n
may st i m u late new models, give a deeper in s i ght into the psychokin es is
p ro c ess and, more imp o rt a n t l y, trigger new experimental techniques .
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Fig. 7. The Hurst graph of randomn ess test data ( ) and biased randomn ess test ( ) data by cor-
re la t ing the data accord ing to the re lation (5.2).
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