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Abstract — The Dirac algebra is examined as a hypercomplex number sys-
tem, where there are six basic, anti-automorphic conjugations.  However, we
can concentrate on only half of this algebra and there find all the old physics
that Dirac found.  We do not even need to introduce matrices at all (which is a
surprise to the field theory community).  The Dirac algebra can be readily
generalized using quaternions to expand the system, and Dirac’s old equation
is also generalized by introducing a new, multi-mass part.  Mass may actually
be very complicated at the quark level, where we never directly see the parti-
cles’ tracks.
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Introduction

The deepest insights we have reached, in understanding the design of our
world [1], [2], [3], [7], [8], have proven to be associated with rather sophisti-
cated number systems.  This math/physics world has been inaccessible to
those who have not studied the mathematics called matrices.  As a result, even
the physics books for junior/senior physics majors avoid this deep coverage.

It may be hopeless, but this paper is an attempt to open this world to non-
physicists, and also to many physicists who never got this far in their studies.

The Number Systems

The core structure here is a generalization of the complex number (hyper-
complex number) system.  These complex numbers have two parts: 
A = a(1) + b(i) where (i)(i) º - (1).  The basis elements here, {(1), (i)}, define
the system.  We can change the number representation to {(e0), (ie0)} and then
(ie0)(ie0) º - (e0).  We can also write the same complex number as 
A = a0(e0) + b0(ie0), where a0 and b0 are any real numbers.  There is a third
form: A = a0(e0) + b1( - ie1), where ( - ie1)( - ie1) º - (e0).  This still means, for ex-
ample, 3 + 2i « 3(e0) + 2(- ie1).  Is this much ado about nothing?  The reason
for this complicated looking form is that it generalizes nicely to four-part 
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numbers, which were invented over the decade preceding 1843 and published
in 1844, by R. Hamilton.  He invented the equivalent of {(e0), ( - ie1), ( - ie2), 
( - ie3)}, with the new rules ( - ie1)( - ie2) º +( - ie3) º - ( - ie2)( - ie1), and cyclic —
like going around a triangle: ccw gives + and cw gives - .  The new elements,
( - ie2) and ( - ie3), are like ( - ie1) in that their squares are - (e0).  He called this
system the quaternions.  He wrote two large volumes on calculus, using
quaternions, and felt they were the key to the universe.  No one taught me
about this, all through school to the Ph.D. level!  It should be introduced in
pre-college math classes as just a curiosity (but a beautiful one).

There is more rich history that we must skip over here [4], [5], [6], [9], but
W. Pauli, in 1927, finally advanced the use of these 1843 number ideas, by ef-
fectively (though he did not know it) doubling Hamilton’s number system to
the H-P number system with an eight-basis: {(e0), ( - ie1), ( - ie2), ( - ie3); (ie0),
(e1), (e2), (e3)}.  We must now define the 8 ´  8 = 64 element multiplication
table.  It is simple enough that all 64 combinations can be done in our heads.
The details are not important here.  The famous Pauli pattern started out with 
(e1)(e2) º (ie3) º - (e2)(e1), and cyclic permutations.  Also,  (e1)(e1) =
(e0), ... (ie0)(e1) = (ie1), ...

The complex numbers have the equivalent basis choices {(e0), (ie0)}, {(e0),
( - ie1)}, {(e0), ( - ie2)}, or {(e0), ( - ie3)}.  Complex numbers have a complex
conjugation [a(e0) + b(ie0)] ­ º [a(e0) - b(ie0)], which we can conveniently de-
scribe as {(e0), (ie0)} ­ º {+(e0), - (ie0)}.  For the quaternions, we 
generalize this conjugation as expected: {(e0), ( - ie1), ( - ie2), ( - ie3)} ­ º
{(e0), - ( - ie1), - ( - ie2), - ( - ie3)}.  We define " - (e) º ( - e)" for convenience, but
"i(e)" is meaningless here.  It is tedious to prove, but (Q1Q2) ­ = Q2

­ Q1
­ , in gen-

eral, for the quaternions.  If you know matrices, then these eight basis ele-
ments are "like" 2 ́  2 complex matrices, and (...) ­ is hermitian conjugation —
flip around the main diagonal and take the complex conjugate of each ele-
ment.  In matrices, (AB)conj = BconjAconj is generally true when conj º hermitian
conjugation (the only really basic conjugation for matrices).  They have trace
and determinant, which are missing in the hypercomplex numbers.

In hypercomplex numbers there are other conjugations, just as important.
They mostly show up in other number systems larger than the quaternions, but
the four-part system {(e0), ( - ie1), (e2), (e3)} is closed, and it has 
{...} ­ º {(e0), - ( - ie1), +(e2), +(e3)}.  Again, we can show that (AB) ­ º B ­ A ­

here.  We "can imagine" the very useful thought sequence ( - ie1)(e2) ®
( - ie1e2) ® ( - iie3) ® +(e3), so we define ( - ie1)(e2) º +(e3), using this "mental
crutch."

The minimal number system for doing serious, relativistic physics is this
eight-part, H-P system above.  Here, 
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It has four real number coefficients {P0, P1, P2, P3}.  For short, we write this
as P = P m (e m ), sum on m = 0,1,2,3.  This hypercomplex number P describes the
energy and momentum of a classical particle moving in space and time, where
we write X º x m (e m ) = ct(e0) + x(e1) + y(e2) + z(e3), m = 0,1,2,3, so x0 = ct, x1 = x,
x2 = y, x3 = z. The c here is light speed.  (The notation is more complicated than
the content — but once mastered, it is very convenient.)  Physically, P and X
are four-vectors.  They "combine" space and time into one, elegant, mathemat-
ical thing.  This is how time is considered as the fourth dimension.  It is not re-
ally a fourth dimension, it just acts like it, mathematically, in the formulas that
have proven to be useful for our world.  To fit the full array of classical physics
at the relativistic level, we need a second conjugation: {(e m ), (ie m )} Ù º {(e0),
(ie0), - (ek), - (iek)}, k = 1,2,3.  Again, we can show that (AB) Ù = B Ù A Ù holds
for any two, eight-part numbers in the H-P system.  Mathematicians call this
order reversal the anti-automorphic property.  For X º x m (e m ), we see that X Ù

leaves the time part alone and inverts the (x, y, z) coordinates.  This is called a
space inversion or a parity transformation.  This conjugation can next be used
to invent the very important inner-product concept, defined by 

sum on k = 1,2,3.  We next invent the standard notation (P m P m ) º (P0P0 - PkPk),
only for convenience.  We also find that X^X = ... = (x m x m )(e0) º (x0x0 - xkxk)(e0),
as expected in flat space-time.  There are NO surviving cross-terms here.  For
X ­ X, there would be cross-terms.  Try it yourself and see.  This X ­ X pattern is
NOT physically useful, it seems.

This quaternion (also called symplectic) conjugation also has the physical
application of defining the electromagnetic field:

Again, c is light speed.  Here, {Ek, Bk} is the electromagnetic field component
set, {Ex, Ey, Ez, Bx, By, Bz}.  Moving charges are the source of this F field and
these moving charges are described by the mathematical current four-vector 
J = J ­ = J m (e m ), which we do not have to go into further here.  (See my book
(Edmonds, 1997) or mcneese.edu/colleges/science/physics if interested.)

I cannot go on without pointing out the beauty of Maxwell’s equation: 
q F = J, where q is an "operator," q m (e m ), involving partial derivatives on the F
field components, which may not mean much to the reader.  Clearly, q F = J is
simple and elegant; it is also true for our real world!  There are eight distinct
equations here, when this is expanded out.  Maxwell found this law in the elec-
trical data available in the 1800s.  His was an inelegant set of equations,
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because Hamilton’s system was not generalized as it should have been, for the
mid- to late-1800s physics.

Natural Groups

Now we can deal with the natural groups in the H-P number system. A group
has members, such as A and B, with some special property.  Then AB = C pro-
duces a third element C with the same property, from the specified “combina-
tion” of the members A and B, represented abstractly by AB. In general the
combination rule takes many forms.  There must be an A - 1 element such that 
AA - 1 = 1 = A - 1A. There must be an identity element which is essentially "1", or
(e0) in our case.

The basis elements of H-P form a finite group with eight members:.{(e m ),
(ie m )}.  There are really 16 members here.  We do not usually list " - (e)" as a
distinct member here, but it really is.

The H-P system has two natural groups: SS ­ º 1(e0) and LL Ù º 1(e0).  The
needed inverses clearly exist here and the identity is clearly 1(e0).  Here, any L
in the group has the general form L = a m (e m ) + b m (ie m ), sum on m = 0,1,2,3.
There are eight parameters here in L, {a m , b m }, but LL Ù = 1(e0) = 1(e0) + 0(ie0).
This means that two equations link the eight parameters, leaving only six free
parameters.  We say this is a Lie group.  It has an infinity of members, so it is in
a very different class from the finite group above.  The other group here, 
SS ­ º 1(e0) = 1(e0) + 0(e1) + 0(e2) + 0(e3).  This means that there are four equa-
tions limiting the eight parameters, so there are only four free parameters here.

The concept of generators is also useful in Lie groups.  It turns out that (in
this hypercomplex number language) we find the L generators from the re-
quirement (...) Ù = - (...) for the basis elements in the number system.  For L,
this gives the generator set {(iek), (ek)}, k = 1,2,3.  The squares of the genera-
tors are also useful.  Here the squares give the pattern { -  -  - +++}.  These
signs dictate the structure of the one-parameter sub-groups in L.  For example,
we have L q = cos q (e0) + sin q (ie1) and, for small q , this becomes L q » 1(e0) +
q (ie1).  This L, we say, is close to the identity, and q q » 0 has been used here.  In
general, L » 1 + e is any member of the group close to the identity.  Then 
LL Ù = 1 leads to e + e Ù = 0.  In the above case, e = q (ie1), with generator (ie1).
For large q , we still have LL Ù = 1(e0) exactly here, because the generator’s
square is negative.  The other type of L member has those generators g with 
gg = +(e0).  Then L q = cosh q (e0) + sinh q (e1), for example.  Here we also have,
for small parameter q , L » 1(e0) + q (e1).  Physicists call these "sinh-type" L q
transformation boosts, for historical reasons.

What is the importance of all this?  Where is the physics here? That is a fair
question.  It turns out that group L is very important to the physics, and group S
is not as important as L.  So we never know where nature will take us.  The S
group can be shown to have the generators {(iek), (ie0)}, with all four squares
negative, so all S q members have sine (not sinh) type terms here.  We say this is
a compact group.  S does not go to infinity here in this compact group, as q
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goes to infinity.  This split into compact and non-compact groups turns out to
be very important to the physics of the quark world, or so it seems now.  The L
group has three compact and three non-compact group parameters.  It has the
three-parameter sub-group {(iek)}, which is in common with a sub-group of S
where S ­ = S Ù .  The group S has the fourth generator commute with the other
three.  This splits it off, in a sense, and the S group is called SU(2) Ä U(1) in
matrix language.  This symbolism is not important, but we shall use their old
names.  The L group is called SL(2,C) by matrix-loving mathematicians.

Classical Physics

With all this four-vector and group machinery, in the H-P number system,
we are finally ready to start our classical design of a universe. These pieces
are like the pigments that fill in the painting.  We have shown the successful
Maxwell equation.  Like Lorentz, we can use it to find the basic symmetry in
nature.  The equation q F = J has q ­ = q , F Ù = - F, and J ­ = J.  Why does nature
use this particular structure for the electromagnetic field?  It turns out to be
simple but that is not enough.  There are too many possibilities that are also
simple.  We need more guidance than that.  It seems ‘God chose’ the addition-
al rule of form covariance under a special group.  This takes the form 
F ® F ¢ º  L Ù FL because then F ¢ Ù = ... = - F ¢ .  Pretty, you must admit.  Similar-
ly, we are then guided to choose q ® q ¢ = L ­ q L, so that q ¢ ­ = ... = q ¢ .  Clearly
then, J is like q and J ® J ¢ = L ­ JL.  Notice that we do not have to define 
J = J ­ here.  The left-hand side of Maxwell’s eqation does not have [q F] ­ =
[q F], so J does not have to either.  If J is not simple like this, then we get the
possibility of magnetic monopole J sources for the E and B fields in F.  So,
maybe nature chose instead 

so that J = J ­ is now necessary and there are no monopoles in our universe.  We
are guessing in either case and only experiment can answer this, it seems.  So
far, no monopoles have been seen.

Now we can invent the game of covariance testing of equations as follows.
Start with the guess q F = J and then form q ¢ F ¢ = J ¢ = L ­ q LL Ù FL = L ­ JL. We
have some “trapped” L’s here, so we define LL^ = 1(e0).  This allows us to mul-
tiply the above equation from the left by L ­ Ù and from the right by L Ù , and see
that all the L’s can be canceled out.  This is the SL(2,C) group above.  LL Ù fits
naturally here, not LL ­ .  The sub-group where L Ù = L ­ is the SU(2) sub-group,
in common with S. Why would not you, if you were God, use this simpler
group, SU(2), for your covariance testing?  It allows a lot more possible laws.
The more complicated the L group, used in the design, the less equations that
can pass through this filter. Thus there could be a much larger reality for the
universe, with larger groups and larger curved space-time.  Maxwell only
shows us its smallest parts.

¶ ¶F F J+ [ ] =­                                              (4)
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Where does Einstein fit in all of this?  He does not very much.  Lorentz got
the right group from Maxwell.  Einstein arrived at the same group a few years
later, from totally different ideas having little to do with any previous mea-
surements that had been made.  He made philosophical guesses about "God’s
preferences" in the design of reality, like Aristotle guessed a lot using pure rea-
son; but Einstein got lucky.  His "wrong" guesses led very simply to the right
covariance group, Lorentz’s, with no hypercomplex numbers used at all.  He
did do something very important here that Lorentz missed.  Finding the group
L, in Maxwell’s equation, does not tell you much about its usefulness.  Einstein
realized that this group relates, not just to an electron’s shrinking and slowed
time keeping, but to real measurements made by real people in the universe, if
they are moving.  He thus predicted that the equivalent of X ¢ = L ­ XL means that
the measured values of x,y,z,t for the moving observer (or a rotated and at rest
observer) are different from those obtained by the really at rest, non-rotating
observer.  This has been confirmed as true for the real world.  Notice that we
got the right equation above, for X ¢ , without any consideration of moving ob-
servers.  Indeed q ¢ is just a part of the game, to find the good equations in na-
ture.  Once we have found them, then we must worry about which physical
frame is the right one in which to see that these laws do indeed work in the lab,
to confirm our predictions.  That is a whole other issue, which was answered in
1965 with the discovery of the 3oK Gamow radiation left over from the Big
Bang.  We know the right frame now, and we have measured our real motion as
about 2/1000 of the speed of light relative to it (moving toward the galaxy
Hydra in Leo).  The American and European physics teaching journals both re-
fused to let me say just that, in print, in their journals.  They defend the current
faith just like the Pope did in Galileo’s day.

Everyone liked Einstein’s approach better than Lorentz’s (except probably
Lorentz).  We favor philosophical principles.  It is a hang up we need to get
over in physics.  We favored parity symmetry, etc., also, and got burned there.
The math ultimately will give us the laws, and we will never know, philosoph-
ically, why they are correct.  We do not really understand relativity the way we
thought we did.  The books need to be changed.  The length contraction and
time slowing are real because the form covariance of Maxwell’s equation re-
flects some deeper, unknown laws that have a certain L symmetry filter on
their structure.  When you are really moving, this causes you to really slow in
time and shrink in the direction of motion.  Somehow the space itself does it —
yes, the ether is back with a vengeance.  Going very very fast means that you
are going very very fast with respect to this ether — it shrinks you and slows
your time.  HOW?  No one presently knows, and we cannot know until we real-
ly know the vacuum state and its number of dimensions, etc. — all of its other
properties.  It is a sea of virtual stuff, and you must run this gauntlet, when
moving — who knows what it can do to you!?  We only know that it does little
to individual sub-atomic particles, except to slow their internal time.  Muons



live longer, before they decay, when moving. We have to stay humble and skep-
tical.

Symmetry of form mainly helps us guess at new laws and equations.  Be-
sides Maxwell, in H-P, we also have Newton.  How would you design classical
mechanics within the H-P number system?  There is no classical design for our
real universe.  There may be exact classical laws in other universes, but not
ours.  In our universe, there are other laws at a much smaller scale size and
these dictate how the world winds up looking to huge creatures observing other
huge objects, where all the subtle reality gets averaged away.  Our quantum
level physics seems to reduce to the following classical approximation.  We
have 

where P = P ­ º mv , v º dX/d t , d t is the time kept on the moving mass’ clock.
We have seen the F field above already.  There is a missing coupling constant
here, with charge q, that can be absorbed into the m (constant) parameter.  Is
this proposed equation form covariant under the group L?  We guess that 
m ¢ = m, t ¢ = t , and c ¢ = c in this game.  The test then starts as follows: 

We see that all the L’s can be canceled out here.  This beautiful law is form co-
variant and it must come from a very elegant, if not pretty, law at the quantum
level.  This equation successfully predicts the path of a mass, with charge q,
being pushed around by the external E and M fields in F. It does work.  The
moving charges make the F field and the F field pushes on the charges.  It not
only works, it all fits nicely into the H-P number system.  I found this form for
Newton’s equation  fairly recently.  See my book for details [5].  It is equiva-
lent to the old Lorentz force form: qE + qv ´ B in vector language, but we have
bypassed all that machinery.  Vectors do not need to be discussed to do the
deepest physics of reality.

The non-physicist reader may not have the patience to fully digest all of this,
but there is nothing hard to grasp here.  It is mostly just algebra with a little
partial differentiation thrown in, but never really used here.  We have covered
the known classical, relativistic world (except Einstein’s beautiful curved-
space gravity).  We will bypass gravity here.  It is in my book for those inter-
ested in seeing curved space in this language.  Curved-space gravity was Ein-
stein’s really spectacular prediction, for he got the right equation at the
classical approximation level for reality.
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The World of Quantum Physics

We are now ready to jump off into the much more complex world of quantum,
relativistic physics, again bypassing all of the non-relativistic, approximate
stuff.  We could examine an "alternative" equation to Maxwell’s, in H-P, that
looks similar but is not really so similar.  In the absence of charge sources, 
J = 0, we see that Maxwell’s equation becomes q F = 0 ® L ­ q LL Ù FL = 0.
Then what about the equation L ­ q LL Ù y  = 0 ?  We are suggesting another kind
of field here, y , where y ¢ = L Ù y .  (This is similar to the quantum Weyl equa-
tion.)  Such classical fields seem natural here, in this H-P number system, but
they are not seen in our classical approximation of the real world.  Because
there is only an L on the left of y , this equation naturally generalizes to q y  =
K, with some kind of "source" K satisfying K ¢ = L ­ K. Notice that here 
y ­ Ù M ® (L Ù y ) ­ Ù M = L ­ [ y ­ Ù M] for any M (hypercomplex) number in H-P; if
invariant, M ¢ = M.  Thus q y  =y ­ Ù Mc is also form invariant.  (Notice that the
simpler form P y  = y Mc is only form covariant for the sub-group L Ù = L ­ .)  No
such (classical) y field, with a mass parameter, has been found in our classical
experience of the world.  Our quantum world, with its successful y , does not
reduce to this classical y field equation for a very significant reason, called the
Pauli exclusion principle.

To enter the quantum world, we have to make guesses [9], [10], [11], [12],
[13].  We directly measure things like the hydrogen atom’s emitted photons
and find a complicated pattern of spectral lines.  These result somehow from
the mathematical description of the electron interacting with the proton.
These lines do not give us much help in trying to find the right laws for the
electron in this bound situation, but they are an excellent test of our progress
— they tell us when we have a successful theory.  We must try to predict them,
and we have learned how, to ten-digit accuracy, in the QED theory for hydro-
gen lines!  This is an amazing fit of our mathematics to the real world.  It
shows that the concepts here are on the right track for our universe, but not
why they work.

The right answer, to enter quantum, seems to be that we must first double
our number system, before we even start to look for the quantum laws.  We
simply allow the outside coefficients to now become complex numbers.  These
c’s have simple multiplication rules and we assume that c(e m ) º (e m )c for any
complex number c º a + Ib, where II º - 1.  Our new basis is now: {(e m ), (ie m ),
I(e m ), I(ie m )}, with 16 elements.  The basis products now come in 16 ́  16 = 256
pairs, but we can still do all of these in our heads!

We must now extend the conjugations to these new I coefficients. There is
little doubt that we should define I ­ º - I.  This is suggested by the matrix
equivalent forms.  However, matrices do not have the quaternion conjugation,
so they give us no guidance here.  About 30 years ago, I decided it is "obvious"
that both conjugations are equally important so they should both treat I the
same way. I committed myself to I Ù º - I.  In the last few months, I have begun
to realize that this is not as natural as it may seem.  We really should invent an-
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other conjugation that is like (...) Ù except that I D º +I.  Both (...) Ù and (...) D are
anti-automorphic.  I am still working on the consequences of all this and will
be reporting shortly, but so far it seems that the old conjugation is still more
important. The new one is useful in combination with the old.  If any A Ù = A D ,
then this A has no I parts.

This 16-basis system is large and complicated but nature uses it, so we must
also. In fact, we must follow nature wherever required in the future.  The 
a + Ib coefficients might need extension to quaternion coefficients,
a + Ib + Jc + Kd, with {I,J,K} having the same multiplication table as 
{( - ie1),( - ie2),( - ie3)}.  We would expect I Ù º ± I to be like J Ù º ± J and 
K Ù º  ±K, however defined.  Now we have 32 basis elements and a 
32 ́  32 = 1024 entry multiplication table — it still can be done in our heads,
but it is getting harder.  This nice math pattern should be further explored to
see if there is any physics in here.  It works out well and is not too complicated.

I even came up with rules for multiplying octonion coefficients (see the
book), with their eight basis elements: {( s 0),( - i s k),( s 0j),( - i s kj)}, k = 1,2,3, so
the 8 ́  8 table can be done in our heads here as well.  We recognize the quater-
nions as the first four parts.  In some ways the octonions are a natural end of
the coefficient generalization process.  It was shown early in this century that
no other systems have the "nice properties" of the quaternion and octonion
systems, which we will not go into here.  The number system now has 
8 ´  16 = 128 basis elements, as follows: {( s 0)(e m ),( s 0)(ie m ),( s 0)(f m ),( s 0)(if m ),
( - i s k)(e m ),...,( s 0j)(e m ),...,( - i s kj)(e m ),...  And yes, we can still fill in the 
128 ́  128 = 16,384 element multiplication table in our heads!  The e’s com-
mute with the s ’s and that helps simplify the calculations considerably.  This
incredible number system may be the backbone of our physical reality.  It is
not pretty, but its use in the design may have been necessary for us to ever
evolve here on the earth, to ponder all this.  I have included this stretching of
Dirac "to the limits" to show the reader that nature may not be simple at all.
We just deal with the simple end of a complex tangle of equations for the
world. 

Back in the simple, 16-basis E system, P ­ º +P has eight parts, not four.  We
only use four of these, so far, in our physics, but which four?  (I wasted years
on that problem.)  The bottom line seems to be that, for quantum, nature uses 

The basic wave equations here are Maxwell, PF = J, and a totally new form of
Dirac, 

This Dirac equation is form covariant if A ¢ = L ­ AL.  This A is a new, external
field affecting the y field as one of its sources.  The A field is "derived" from

P Mc Ay y y= +­ Ù                                          (8)
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the F field.  (See my book for details.)  This y field is also its own source,
through the constant M, associated with the free quantum particle (cloud) de-
scribed by this y field.  Here, Åh and c are constants, one very small and the
other very large.  Some coupling constants have been left out above for clarity.  

For several years I had hoped that this equation would turn out to be a new
equation, but alas I have recently proved that it is just the same as the equation
Dirac found in 1928 for relativistic, quantum electrons.  The similarity is com-
plicated to show, because of the y ­ Ù conjugations that are needed here for
form covariance.  There is nothing quite like that in ordinary matrix language!

The shocking new result here is that we have gotten all of the usual Dirac
theory in only a 16-part number system! Dirac (and everyone since, as far as I
know) had to go to a 32-part number system to get the Dirac equation to make
sense in the old matrix language.  Since we do not need that huge Dirac num-
ber system for all of the Dirac physics, then what is full Dirac really good for?
Can we just throw full Dirac away?  Maybe nature uses it at a deeper level —
such as for the quark world (inside of protons) and for whatever is inside of
electrons.  Now that we realize there is more in all this Dirac machinery than
we have really been using, we may find more exotic things there.  The full
Dirac algebra has the 32-basis set:{(e m ), (ie m ), I(e m ), I(ie m ); (f m ), (if m ), I(f m ),
I(if m )}. Now there are 32 ́  32 = 1024 combinations, and my book shows how
to still do all of these in our heads as well!  We will not do much more with the
Dirac algebra here.  The E sub-algebra, consisting of the first 16 elements
above, is closed and it probably is big enough for the known physics. That
should be interesting to see proved or disproved, in the near future.  This E sys-
tem may simplify the quantum electrodynamics (QED) presentation in future
textbooks.

We should next look at the natural covariance group in E, and later in D. We
still find that P = P ­ and that P Ù P is the correct inner product in E.  Thus 
LL Ù = 1(e0) is still the natural group.  The generator set now has the same old
six generators, but there are two new ones: I(e0) and I(ie0).  The first is a phase
change, already seen in non-relativistic quantum theory.  The second, however,
turns a four-vector P into an eight-vector P, so it is really radical! We must
throw it away or rethink the whole world of quarks.  (Einstein’s philosophical
approach to covariance is clearly being left behind here.  The math is now
guiding us.)  In full Dirac, the LL Ù = 1(e0) group has 16 parameters!  One is
again I(e0), and there are ten real and five (other) imaginary generators.  We
may have to find a way to cut these groups down to size, but which size?  The
ten real parameters suggest P might have five dimensions for full Dirac
physics.  The full 15 parameters go with a 15-part space-time.  We do not real-
ly know what is going on down inside protons, or how many microscopic di-
mensions exist.  We cannot go down there and look.  Our elegant measuring
tools are very crude, though ingeniously designed and huge in both size and
cost.

If P Ù P should NOT have any cross-terms in full Dirac, for some physical



reason, then P is limited to only five internal parts. We may be able to justify
throwing away any L parts that take P beyond these five parts, after the action 
P ¢ = L ­ PL. We must find the correct form covariance group for nature — as-
suming that such a covariance concept is still meaningful down at this 10 - 15

meter level, and below.  I found another useful conjugation in full Dirac, (...) Ú ,
which is also anti-automorphic.  In E, (...) Ù = (...) Ú , so they are closely related.
If we guess that L Ù º L Ú , in the real world, then the fifth part of P is also invari-
ant, as M is invariant. We then have two candidates for mass in the 
P(5) y = y ­ Ù Mc equation, but only in full Dirac. Remember that M here can be
"anything" hypercomplex, without disturbing the covariance of the equation.
We have to find a way to limit M from its maximum of 32 internal, invariant
pieces!  All kinds of wild things are possible here in full Dirac.  The original
equation, that he found in 1928, is essentially the case where 
M = mI(f0), and the fifth part of P is possibly a "tachyonish" mass part that is
being neglected. Then Dirac’s original, free particle equation looks like 
P(4) y » mI(f0)c y ; whereas, Maxwell’s equation in full Dirac now generalizes to
P(5)F = 0, with a fifth P part (tachyonish mass?).  These results are probably
just the tip of the "physics iceberg," here in full Dirac.  Things are so much
more restricted and thus simple if only the E system was really used in the de-
sign.  That will have to be explored more in the future.  Can QCD, the current
theory of quarks, also be fitted into the smaller E hypercomplex number sys-
tem?

The most amazing thing to me and probably to the reader is, "How did our
world come to be like this — with all this detailed mathematical structure?"
Could God change the mathematical rules a bit and still have a universe in
which conscious humanoids like us evolve to contemplate it later?  Why go to
full Dirac when the E sub-system is so much easier? Is it possible that a uni-
verse designed around E may not lead to evolution of conscious beings?
Maybe we can answer this religious question to some extent when we under-
stand what quarks are really like, and why electrons are 1/1800th as heavy as
protons.  Everything in this paper could have been written in the 1930s!  This is
pre-second quantization, pre-QED theory.  The perspective here is just differ-
ent enough, from that we get from thinking with matrices, to have apparently
been missed for about 70 years.  I have spent 30 years developing this view "in
a vacuum," largely because I was taught the old ways in graduate school before
I started; it is so hard to break out.  We must, as Feynman used to say, look at
things a new way. He got me onto this life-consuming quest (my book is dedi-
cated to his memory), and I know that he would revel in the E results now, were
he still alive to see them.  The other theorists who have dismissed this as triv-
ial, even recently (Journal of Mathematical Physics), are still missing a great
opportunity.  Schwinger also died recently but he had never responded to my
earlier letters over the years.  I have recently written to several theorists show-
ing them briefly how Dirac fits in only half of the Dirac algebra, yet to be pub-
lished.  Perhaps they will now take this approach to covariance and field 
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structure seriously, but I have had no replies to date. Whether they do take no-
tice now, or continue to think this trivial, the real task lies ahead for the next
generation. Maybe this article and the book will get a new bandwagon going,
so we can still live to see why electrons are lighter than protons, and why
muons are 200 times heavier than electrons — instead of some other number.
We know nothing really beyond chemistry, until we can explain these two
numbers.  This journal and its patient reviewer have been the exception to the
rule, for my experience over the past few years.  They are to be congratulated
on their openness and courage, which have allowed you, the reader, the joy (or
pain) of seeing the wonderful mathematical structure of the world, that some-
how keeps us alive.  It is certainly an incredible design. 
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