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Abstract—A consortium of research groups at Freiburg, Giessen, and
Princeton was formed in 1996 to pursue multidisciplinary studies of
mind/machine interaction anomalies. The first collaborative project under-
taken was an attempted replication of prior Princeton experiments that had
demonstrated anomalous deviations of the outputs of electronic random
event generators in correlation with prestated intentions of human operators.
For this replication, each of the three participating laboratories collected data
from 250 3000–trial 200 binary-sample experimental sessions, generated
by 227 human operators. Identical noise-source equipment was used
throughout, and essentially similar protocols and data analysis procedures
were followed. Data were binned in terms of operator intention to increase
the mean of the 200-binary-sample distributions (HI); to decrease the mean
(LO); or not to attempt any influence (BL). Contiguous unattended calibra-
tions were carried forward throughout. The agreed upon primary criterion for
the anomalous effect was the magnitude of the HI–LO data separation, but
data also were collected on a number of secondary correlates. The primary re-
sult of this replication effort was that whereas the overall HI–LO mean sepa-
rations proceeded in the intended direction at all three laboratories, the over-
all sizes of these deviations failed by an order of magnitude to attain that of
the prior experiments, or to achieve any persuasive level of statistical signifi-
cance. However, various portions of the data displayed a substantial number
of interior structural anomalies in such features as a reduction in trial-level
standard deviations; irregular series-position patterns; and differential de-
pendencies on various secondary parameters, such as feedback type or exper-
imental run length, to a composite extent well beyond chance expectation.
The change from the systematic, intention-correlated mean shifts found in
the prior studies, to this polyglot pattern of structural distortions, testifies to
inadequate understanding of the basic phenomena involved and suggests a
need for more sophisticated experiments and theoretical models for their fur-
ther elucidation.
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I. Context and Background

A. History and Organization

Electronic random event generators (REGs) have long been used in a wide
range of laboratory experiments designed to test the hypothesis that human
consciousness may interact directly with random physical systems (Radin &
Nelson, 1989; Schmidt, 1970). The results have provided strong statistical evi-
dence that the mean outputs of these devices can deviate from chance expecta-
tion in direct correlation with prestated intentions of the participants and that
aberrations in various other features of the output count distributions may re-
flect subtler aspects of the human/machine interactions. Over the past two
decades, the Princeton Engineering Anomalies Research Laboratory (PEAR)
has produced very large databases in REG experiments of this class (Nelson,
Bradish, & Dobyns, 1989), which have further confirmed the existence of
these types of human/machine anomalies, and have indicated some of their
physical and psychological characteristics (Jahn, Dobyns, & Dunne, 1991;
Jahn et al., 1997).

While these PEAR experiments have constituted extensive conceptual
replications of earlier work elsewhere (Bierman & Houtkooper, 1975; Radin &
Nelson, 1989; Rhine & Humphrey, 1944; Schmidt, Morris, & Rudolph, 1986)
and also have included many internal replications within themselves, it was



felt that more might be learned from further, more broadly based studies of
similar character and comparable controls, conducted in collaboration with
other researchers having complementary professional interests and experi-
ence. For this purpose, a consortium of laboratories was assembled in 1996,
comprising the Freiburg Anomalous Mind/Machine Interactions group
(FAMMI) at the Institut für Grenzgebiete der Psychologie und Psychohygiene
(IGPP) in Freiburg, the Giessen Anomalies Research Project (GARP) in the
Center for Psychobiology and Behavioral Medicine at Justus-Liebig-Univer-
sität Giessen, and the PEAR Laboratory at Princeton University. The primary
agenda of this “Mind/Machine Interaction Consortium” was a program of pro-
fessional interaction and shared technology that would broaden and deepen
our collective understanding of these consciousness-related anomalous phe-
nomena.

As an initial effort to establish sound and effective strategies for long-term
collaboration, it was agreed that the first project to be addressed would be an
extensive, commensurate repetition of prior PEAR REG experiments, con-
ducted contemporaneously in all three locations. The first phase of this project
was to be as strict a replication as feasible, given the essential differences of
structure and style of the three laboratories. At the same time, it was to provide
a platform for developing and deploying effective shared technologies, proto-
cols, database acquisition and management techniques, and interlaboratory
and interpersonal communications that would enable productive longer-term
collaborations. A second phase of the project also was planned that would ac-
commodate the three laboratories’ specialized interests and capabilities in
psychological, psychophysiological, and engineering investigations, respec-
tively, but this article shall deal only with Phase I. 

B. Prior PEAR Experience

1. Equipment. Over its many years of mind/machine experimentation, the
PEAR program has developed several versions of electronic random event
generators, utilizing different primary sources of noise but maintaining impor-
tant common features of design. An original “benchmark” experiment em-
ployed a commercial random source sold by Elgenco, Inc. The core of this
module is proprietary, but Elgenco’s engineering staff describe it as “solid
state junctions with precision preamplifiers,” implying processes that rely on
quantum tunneling to produce unpredictable, broad-spectrum noise in the form
of low-amplitude voltage fluctuations. A much simpler and more compact
REG, termed “PortREG,” was developed subsequently, based on thermal noise
in resistors, which also produces a well-behaved, broad-spectrum fluctuation.
A yet later-generation device, called “MicroREG,” uses a field effect transis-
tor for the primary noise source, again relying on quantum tunneling to provide
uncorrelated fundamental events that compound to an unpredictable voltage
fluctuation.

In all cases, the electronic process begins with a white-noise frequency dis-
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tribution. For example, the benchmark REG, on which most of the prior data
were acquired, presents a flat spectrum, +/– 1 dB, from 50 Hz to 20 kHz. A sub-
sequent 1000-Hz low-end cutoff attenuates frequencies below the data-sam-
pling rate. This filtering, followed by appropriate amplification and clipping,
produces an approximately rectangular wave train with unpredictable tempo-
ral spacing. Gated sampling, typically at 1-kHz, then yields a regularly spaced
sequence of randomly alternating +/– bits, suitable for rapid counting. To
eliminate biases from such environmental stresses as temperature change or
component aging, “exclusive or” (XOR) masks are applied to the digital data
streams in regularly alternating +/– patterns. In the experiments, output data
are presented and recorded in “trials” that are the sum of N samples (typically
200 bits) from the primary sequence, thus mitigating any residual short-lag au-
tocorrelations. The final output of the benchmark REG thus is a sequence of
conditioned bits and, in the later devices, of bytes, presented to the computer’s
serial port, which then are collected into a sequence of trials, usually presented
at approximately one trial per second. Calibrations of all of the devices con-
form to statistical chance expectations for the mean, standard deviation, skew-
ness, and kurtosis of the accumulated trial-score distributions, and for time-se-
ries of independent events (cf. Appendix I).

2. Experimental design and results. The basic experimental designs embody
further protocol-level protections against artifacts. Using a “tripolar” proto-
col, participants generate data under three conditions of prespecified inten-
tion, namely to achieve high (HI) or low (LO) output distribution mean values,
or to generate baseline (BL) data. With the exception of these expressed inten-
tions, which are immutably prerecorded in the experiments’ computer files, all
other potentially influential protocol variables are maintained constant within
an experimental session.

In addition to the primary variable of tripolar intention, a number of sec-
ondary parameters are available as options that can be explored in separate
sessions and assessed as factors that may contribute to the experimental out-
comes. These include human variables, such as the identities of the individual
operators, their gender, the number co-operating in the effort, and whether
they are “prolific,” i.e., have accumulated sufficient data to permit robust in-
ternal comparisons of their results; technical variables, such as the different
noise sources, including not only the physical random sources described but
also various hardwired and algorithmic pseudorandom generators, designated
as nondeterministic and deterministic sources, respectively; operational vari-
ables, including information density (bits per second); the number of trials in
automatically sequenced “runs;” the instruction mode (volitional or instruct-
ed); the type of feedback provided to the operator, etc.; and physical variables,
including the spatial separation of the operator from the machine (up to thou-
sands of miles) and temporal separations between operator attempts and actu-
al operation of the devices (up to several hours or even a few days).

For the purposes of the replication studies reported here, we shall refer
mainly to that segment of previous PEAR data provided by individual opera-



tors adjacent to “benchmark” REG equipment. These “local, single-operator”
experiments, contributed over 12 years by 91 participants, constituted 522
replications at the “series” or “session” level, comprising nearly two and a half
million, 200-bit trials. The primary results of this segment are summarized as
“Prior PEAR Data” in Table 0. This database also was subjected to a broad
range of subordinate analytical tests, including specific searches for indicative
structural details and broad-based analyses of variance, all of which have been
extensively reported in the archival literature and supporting technical reports
(Jahn et al., 1997; Dunne, 1991; Dunne et al., 1994; Nelson et al., 2000) and
will be reviewed as appropriate in the following text.

In passing, it might be noted that these particular experiments were comple-
mented by an array of studies that used many other forms of random generator
equipment and protocols (Jahn, Dunne, & Nelson, 1987), including the much
more compact “PortREG” devices chosen for the replication program to fol-
low, several macroscopic mechanical analogs (Dunne, Nelson, & Jahn, 1988;
Nelson et al., 1994), various pseudorandom devices (Jahn et al., 1997), “re-
mote” and “off-time” protocols (Dunne & Jahn, 1992), and nonintentional
“FieldREG” experiments (Nelson et al., 1996, 1998). Results of these studies
were generally consistent and collectively extended the statistical significance
of the entire program by several orders of magnitude (Jahn et al., 1997).

Many human/machine experiments of this sort have been conducted at other
laboratories, and most of these have yielded commensurate anomalous results
(Radin, 1997). Related studies have also demonstrated responses from biolog-
ical substances or living organisms employed as the random targets of the op-
erators’ intentions (Braud, 1993; Braud & Dennis, 1989; Grad, 1963). In some
cases, the role of the operators has been played by other than human species,
e.g., by chicks, rabbits, and mice, many of whom seem capable of eliciting
anomalous correlations of machine behavior with their biological or emotion-
al needs (Peoc’h, 1995). From this array of empirical studies, it appears that
operator desire is capable of establishing observable relationships to the out-
puts of such random physical systems, by some unknown means that is largely
independent of the nature of the device and also independent of the interven-
ing distance and time. The ubiquitous character of these anomalies bespeaks
broad potential importance to contemporary scientific understanding and to
individual and cultural welfare.

II. Consortium Replication

A. Experimental Design

At a planning meeting held shortly after the inception of the Mind/Machine
Consortium, the members decided to undertake yet another replication of this
class of REG experiments. Second-generation PortREG technology was se-
lected for the random source because of its simplicity, portability, and relative-
ly low cost, with confidence of its efficacy based on various indications from
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preceding PEAR research and that of others that these anomalous effects are
independent of the source of randomness (Jahn et al., 1997; Schmidt & Pantas,
1972). All three laboratories would employ identical protocols and data-pro-
cessing techniques, to the extent feasible given the differing languages, disci-
plinary backgrounds, and skills. Although the primary hypothesis to be tested
was confirmation of the earlier PEAR results on a simple HI–LO mean-shift
criterion, secondary investigations were to provide structural data on the char-
acteristics and correlates of the phenomena. Specifically, it was agreed that
each laboratory would use large pools of operators to accumulate 250 experi-
mental “sessions” or “series,” each series consisting of 1000 200-sample tri-
als in each of the HI, LO, and BL intentions and, in addition, would extract
whatever structural aspects of the data befit its capabilities, such as separate
HI, LO, and BL performances, gender effects, serial position effects, standard
deviations, feedback correlations, experimenter effects, etc.

B. Experimental Results

This section presents all of the pertinent data generated by the three labora-
tories in as commensurate and complete a format as possible here. We begin
with a table key and brief explanatory text regarding the tabular formats. Then
follows a sequence of tables that summarize the overall results of each labora-
tory with respect to the primary HI–LO mean-shift hypothesis, followed by a
concatenation of all three databases. For comparison, these tables are preceded
by similar representations of the earlier PEAR data and of the contemporane-
ous calibration data described in more detail in Appendix I. Following these
summary tables, we then display a large array of explorations into data distrib-
ution structures and secondary parameter correlations attempted by each labo-
ratory, both individually and collectively.

1. Tabular key and comments. All of the following tables use a common sta-
tistical notation:

= Shift in empirical trial-level mean from chance expectation of 100
(also called “effect size”)

s = Empirical trial-level standard deviation
Z = Standardized Z-score of the mean-shift, calculated as:

Z =
m

s0

p
Nt

where
Nt = Number of experimental trials
s 0 = Theoretical chance standard deviation for 200-sample trials

(7.071)
Zdiff = Z-score for differences of any two indicated data subsets (see text

below)
2 = Chi-squared statistic to test for goodness-of-fit of empirical data 

values to a comparison standard



The first set of tables presents the overall results of the entire PortREG-
replication database for all three intentions and for the HI–LO, or , criterion
which is regarded as the primary variable. The mean shift for the column is
calculated by inverting the LO data with respect to the mean and concatenating
them with the HI, so it is the average, rather than the sum, of the mean shifts in
the intended directions. This is intended to make statistical comparisons easier
by preventing intrinsic differences of scale between the separate intentions
and the values. This representation makes the data effectively a single
large pool of trials which also have a theoretically expected mean of 100 and
standard deviation of (50)1/2 = 7.071, and in which a positive mean shift corre-
sponds to success in the direction of intention. For all of the replication series,
Nt comprises 1000 trials per intention. (The earliest prior PEAR data were
taken in larger series of 5000 trials per intention; the series size subsequently
was reduced in stages to a standard of 1000 trials per intention, which allowed
the experiment to be completed in a single session. Thus, the total number of
prior PEAR trials is considerably greater than one would infer from the counts
of series listed in the table; e.g., the prior PEAR database is approximately
equivalent to 834 PortREG series.)

For the sequence of structural tables that follow, Zdiff refers to the differences
in mean shifts, computed as follows: Given two populations, N1 and N2, having
Z-scores Z1 and Z2, we may compute a normalized effect size for each as i =
Zi/(Nt)

1/2, which is related to by a multiplicative constant, e.g., i =

i/(50)1/2. The uncertainty associated with a Z-score is always 1 by construc-
tion, so the i have measurement uncertainties s i = 1/(Ni)

1/2. The standard nor-
mal deviate, or Z-score, for a difference between sets 1 and 2 is therefore the
difference 1 - 2 divided by the uncertainty of this difference, s d, which is
simply the sum in quadrature of the individual uncertainties: s2

d = s2
1 + s2

2 .
This can be reduced to an expression in the original Ns and Zs:

Zdif f = 1 - 2q
s2

1 + s2
2

=
Z1/ Ö N1 - Z2 Ö N2

Ö 1/ N1 + 1/ N2
=

Z1 Ö N2 - Z2 Ö N1

Ö N1 + N2
(1)

For most of these presentations and the associated discussions, we have cho-
sen to use only Z-scores without associated tail-probability (p) values, on the
grounds that the former are completely unambiguous, depending only on the
statistical character of the data used, whereas p-values require subjective and
occasionally contentious decisions regarding the appropriateness of one- or
two-tailed statistics, primary or secondary analyses, Bonferroni corrections for
multiple or prospective analyses, and so forth. The direct correspondence of the
Z values to particular “tail-probabilities” is, of course, well tabulated, e.g.:

Z 1.6449 1.9600 2.3263 2.5758 3.0902

Pz (1-tail) 0.05 0.025 0.01 0.005 0.001
Pz (2-tail) 0.10 0.05 0.02 0.01 0.002
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2. Primary data summary. The mean-shift results and their associated stan-
dard deviations, obtained by each of the laboratories in each direction of inten-
tion, are summarized in Tables 0, 00, F.1, G.1, P.1, and C.1.

It is immediately clear from these summary data that although the mean
HI–LO separations found by each of the laboratories all proceed in the intend-
ed direction, they fail by an order of magnitude to reach the level of the prior
PEAR data or any persuasive level of statistical significance. The implications
of this result are discussed at length in Section III. Nonetheless, subtler struc-
tural anomalies, such as the almost universal depression of the trial-level stan-
dard deviations below the theoretical and calibration values, are already evi-
dent in the summary tables above, and invite more detailed searches for other
secondary correlates. The following tables display the results of such examina-
tions (cf. section III.B.5).

3. Structural data.
(a) Gender effects. In the following sequence of tables, we display break-

downs of the laboratory data in terms of various subordinate secondary para-
meters that proved instructive in the prior PEAR studies. As a first example,
the distinctions between male and female operator performance that were
studied extensively in the early work (Dunne, 1998) are broken down here by
laboratory and intention (Tables F.2, G.2, P.2, and C.2). Other than the differ-

TABLE 0
Prior PEAR Laboratory Data (522 Series, 91 Operators)

Measure BL LO HI

0.013372 - 0.015586 0.025994 0.020800
s 7.074 7.069 7.070 7.070
Z 1.7132 - 2.0161 3.3688 3.8087

TABLE 00
Concurrent Calibrations (1049 Series)

Measure Theory FAMMI GARP PEAR

0.000000 - 0.000901 0.000166 - 0.000207
s 7.0711 7.0753 7.0691 7.0697

0.0000 - 0.1175 0.0253 - 0.0305

TABLE F.1
All FAMMI Data (250 Series, 80 Operators)

Measure BL LO HI

- 0.002308 - 0.006496 0.006336 0.006416
s 7.0550 7.0642 7.0713 7.0678
Z - 0.1632 - 0.4593 0.4480 0.6416



ence between single-operator and dual-operator performance, which was ex-
plored only by the PEAR group, the only remarkable gender differences evi-
dent in the concatenated data are in the baseline results. Most of this effect is
contributed by the FAMMI and GARP operators, with little assistance from
PEAR, despite the prominence of such a disparity, albeit with opposite sign, in
the prior PEAR experience (Dunne, 1998). Also possibly worth noting are the
almost uniformly higher standard deviations of the female operators.

(b) Assignment effects. As one element in a broad search for subjective or
psychological correlates, the data have been divided into those trials wherein
the directional intention of the operator was assigned by an auxiliary random
process of some sort (Instructed), and those for which the operator selected the
direction (Volitional), within the constraints of balanced numbers of HI, LO,
and BL trials (Tables F.3, G.3, P.3, and C.3). Here, one subset of data emerges
as disparate; the GARP experiments in the Instructed mode show very signifi-
cant anticorrelation with intention, in contrast to the corresponding Volitional
data, which correlate positively. The difference Z-score is highly significant by
any reasonable criterion. However, similar effects are not found in the FAMMI
or PEAR data, leaving the concatenated data less impressive in this distinction.

(c) Feedback effects. The feedback presented to the operator is another sub-
jective correlate previously examined at PEAR. The alternatives here are (a) a
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TABLE G.1
All GARP Data (250 Series, 69 Operators)

Measure BL LO HI

0.004116 - 0.012596 - 0.00808 0.002258
s 7.0559 7.0418 7.0713 7.0566
Z 0.2910 - 0.8907 - 0.5713 0.2258

TABLE P.1
All PEAR Data (250 Series, 78 Operators)

Measure BL LO HI

0.001216 0.004836 0.008148 0.001656
s 7.0617 7.0608 7.0622 7.0615
Z 0.0860 0.3420 0.5762 0.1656

TABLE C.1
Concatenation Across All Laboratories (750 Series, 227 Operators)

Measure BL LO HI

0.001008 - 0.004752 0.002135 0.003443
s 7.0575 7.0556 7.0683 7.0619
Z 0.1235 - 0.5820 0.2614 0.5964
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graphic display showing the cumulative deviation; (b) a digital display with
large numbers showing the current trial and running mean; and (c) no feedback
at all, with results reported only at the end of the experimental run (Tables F.4,
G.4, P.4, and C.4). Here we find several noteworthy entries in the GARP data,
two in the digital subset ( and BL) and one in the no-feedback subset (HI),
and two in the FAMMI data, in the HI-digital and HI no-feedback subsets, all
of which feed through to their difference values, and are sufficient to drive
several significant excursions in the concatenated data.

(d) Runlength effects. Since the duration of the experimental runs that re-
quire steady attention of the operators conceivably might introduce subjective
factors such as boredom, distraction, and anxiety, alternatives of 100-trial
(1.5-minute) and 1000-trial (15-minute) runs were admitted into the protocols
(Tables F.5, G.5, P.5, and C.5). Noteworthy here are the differences between
the two run lengths in the LO-intention GARP data, which, supported modest-
ly by the corresponding PEAR data, feed through to a marginally interesting
concatenation value.

TABLE F.2
Gender Effects in FAMMI Data

Measure BL LO HI

Male operators (150 series, 40 operators)
0.029607 0.001320 0.002567 0.000623

s 7.0542 7.0616 7.0673 7.0644
Z 1.6216 0.0723 0.1406 0.0483

Female operators (100 series, 40 operators)
- 0.050180 - 0.018220 0.011990 0.015105

s 7.0559 7.0680 7.0775 7.0727
Z - 2.2441 - 0.8148 0.5362 0.9553

Differences
Zdiff (F - M) - 2.7639 - 0.6769 0.3264 0.7095

TABLE G.2
Gender Effects in GARP Data

Measure BL LO HI

Male operators (124 series, 35 operators)
0.023645 - 0.003234 - 0.005306 - 0.001036

s 7.0493 7.0414 7.0776 7.0595
Z 1.1775 - 0.1610 - 0.2643 - 0.0730

Female operators (126 series, 34 operators )
- 0.015103 - 0.021810 - 0.010810 0.005500

s 7.0624 7.0422 7.0651 7.0536
Z - 0.7582 - 1.0948 - 0.5426 0.3905

Differences
Zdiff (F - M) - 1.3699 - 0.6567 - 0.1946 - 0.3268



(e) Series-position effects. Since subjective issues of boredom, anxiety,
overconfidence, and learning also might manifest in the operator’s perfor-
mance over more major blocks of experimental effort, data also have been
processed on a series-by-series basis, in a search for some definitive series-po-
sition pattern, such as that found in the prior PEAR studies (Dunne et al.,
1994). In the following tables, the column labeled N lists the number of opera-
tors completing that number of series, and the notation 5+ denotes the com-
bined results of all series numbered 5 and higher. Those PEAR and GARP op-
erators who had previously performed five or more series or their equivalent
on any similar REG experiments were regarded as contributing replication se-
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TABLE P.2
Gender Effects in PEAR Data

Measure BL LO HI

Male operators (126 series, 36 operators)
0.005063 0.017333 0.018103 0.000385

s 7.0591 7.0578 7.0536 7.0557
Z 0.2542 0.8701 0.9088 0.0273

Female operators (76 series, 22 operators)
- 0.013539 0.006382 - 0.039263 - 0.022822

s 7.0680 7.0673 7.0733 7.0703
Z - 0.5279 0.2488 - 1.5308 - 1.2583

Multiple operators (48series, 20 operators)
0.014479 - 0.030417 0.057083 0.043750

s 7.0584 7.0581 7.0673 7.0627
Z 0.4486 - 0.9424 1.7687 1.9170

Differences
Zdiff (F -  M) - 0.5728 - 0.3372 - 1.7664 - 1.0106
Zdiff (1 - 2) - 0.4572 1.2151 - 1.6868 - 2.0519

Note: The Gender parameter at PEAR is treated as three-valued rather than two-valued, since
operator pairs also contributed to the replication database. Rather than doing three Zdiff compar-
isons, one set of comparisons between males and females, and separate comparisons between
combined results of individual operators and the multi-operator database, are presented.

TABLE C.2
Gender Differences in Concatenated Data

Measure BL LO HI

Male operators (400 series, 111 operators)
0.020028 0.004953 0.005020 0.000034

s 7.0542 7.0542 7.0662 7.0602
Z 1.7913 0.4430 0.4490 0.0043

Female operators (302 series, 96 operators)
- 0.026325 - 0.013526 - 0.010421 0.001553

s 7.0617 7.0570 7.0713 7.0642
Z - 2.0459 - 1.0512 - 0.8099 0.1707

Differences
Zdiff (F - M) - 2.7192 - 1.0841 - 0.9058 0.1260



512 R. Jahn et al.

ries only in the 5+ category (Tables F.6, G.6, P.6, and C.6). Interpretation of
this disparate array of results is deferred until section III.3.

(f) Individual laboratory explorations. Some parameter or protocol options
were explored by only one of the three laboratories having a particular interest
in that factor, leaving no possibilities of interlaboratory concatenations. For
example, Table F.7 lists the FAMMI data acquired under supervision of vari-
ous experimenters. Numbers 1, 2, and 3 refer to three particular individuals;
Group 4 subsumes several incidental experimenters. No remarkable individ-
ual scores appear, and a 2 statistic computed by summing the squares of the Z-
scores in each subset shows no evidence of significant differences in behavior.
In fact, the 2 for the HI intention is so small as to suggest anomalous consis-
tency (p = 0.980).

In Table G.7 are listed the results of a GARP investigation of the importance
of the control of the REG trials by an automatic sequencer vs. allowing the op-
erator to initiate each trial ad libidum. No sensitivity to this option appears in
these data.

TABLE F.3
Assignment Effects in FAMMI Data

Measure BL LO HI

Instructed (58 series, 23 operators)
0.027466 - 0.015397 0.027017 0.021207

s 7.0534 7.0656 7.1087 7.0872
Z 0.9354 - 0.5244 0.9202 1.0215

Volitional (192 series, 80 operators )
- 0.011302 - 0.003807 0.000089 0.001948

s 7.0554 7.0637 7.0600 7.0619
Z - 0.7004 - 0.2359 0.0055 0.1707

Differences
Zdiff (I - V) 1.1571 - 0.3459 0.8038 0.8129

TABLE G.3
Assignment Effects in GARP Data

Measure BL LO HI

Instructed (26 series, 17 operators)
- 0.024269 0.082192 - 0.100192 - 0.091192

s 6.9907 7.0870 7.0559 7.0714
Z - 0.5534 1.8743 - 2.2847 - 2.9409

Volitional (224 series, 69 operators )
0.007411 - 0.023598 0.002612 0.013105

s 7.0635 7.0365 7.0730 7.0548
Z 0.4960 - 1.5795 0.1748 1.2405

Differences
Zdiff (I - V) - 0.6838 2.2835 - 2.2190 - 3.1838



Finally, in Table G.8 are presented GARP results for four classes of opera-
tors: those selected and processed in a formal fashion; members of the research
staff; students in the laboratory; and casual visitors. Here the only striking dis-
parity is contributed by the visitor category in the BL intention, leading to a
slightly elevated 2 indicator for that condition.

(g) Temporal evolution of effect sizes. As an alternative representation of the
full replication databases, Figures 1 through 3 present sets of cumulative devi-
ation graphs that summarize the historical evolution of each laboratory’s com-
pounding results for the mean shifts under HI, LO, and BL intentions. For
comparison, Figure 4 shows similar plots of the prior PEAR results. Figure 5
compares cumulative deviations of the HI–LO separations for each of the
three laboratories. In all of these figures, the dotted parabolic envelopes are the
loci of cumulative deviations corresponding to one-tailed chance probabilities
of .05 at the given abscissa.
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TABLE P.3
Assignment Effects in PEAR Data

Measure BL LO HI

Instructed (133 series, 45 operators)
0.007241 0.008346 - 0.002594 - 0.005470

s 7.0617 7.0586 7.0614 7.0600
Z 0.3734 0.4304 - 0.1338 - 0.3990

Volitional (117 series, 52 operators )
- 0.005632 0.000846 0.020359 0.009756

s 7.0617 7.0633 7.0632 7.0632
Z - 0.2725 0.0409 0.9848 0.6674

Differences
Zdiff (I - V) 0.4542 0.2646 - 0.8098 - 0.7598

TABLE C.3
Assignment Effects in Concatenated Data

Measure BL LO HI

Instructed (217 series, 85 operators)
0.008871 0.010848 - 0.006373 - 0.008611

s 7.0510 7.0639 7.0735 7.0687
Z 0.5844 0.7146 - 0.4199 - 0.8022

Volitional (533 series, 201 operators)
- 0.002193 - 0.011103 0.005598 0.008351

s 7.0602 7.0522 7.0662 7.0592
Z - 0.2264 - 1.1464 0.5780 1.2193

Differences
Zdiff (I - V) 0.6145 1.2191 - 0.6649 - 1.3322
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TABLE F.4
Feedback Effects in FAMMI Data

Measure BL LO HI

Digital (7 series, 3 operators )
0.055571 0.087000 0.173286 0.043143

s 7.0474 7.0079 7.1947 7.1029
Z 0.6575 1.0294 2.0503 0.7219

Graphic (229 series, 80 operators )
0.000642 - 0.012694 - 0.005419 0.003638

s 7.0531 7.0629 7.0640 7.0635
Z 0.0434 - 0.8591 - 0.3667 0.3481

None (14 series, 8 operators)
- 0.079500 0.048143 0.115143 0.033500

s 7.0900 7.1121 7.1275 7.1202
Z - 1.3303 0.8056 1.9267 0.7928

Differences
Zdiff (D - G) 0.6402 1.1620 2.0829 0.6512
Zdiff (D - N) 1.3049 0.3754 0.5617 0.1317
Zdiff (G - N) 1.3018 - 0.9882 - 1.9584 - 0.6861

TABLE G.4
Feedback Effects in GARP Data

Measure BL LO HI

Digital (50 series, 37 operators )
0.058980 - 0.042820 0.045300 0.044060

s 7.0518 7.0416 7.0625 7.0520
Z 1.8651 - 1.3541 1.4325 1.9704

Graphic (189 series, 69 operators)
- 0.003709 - 0.001127 - 0.015365 - 0.007119

s 7.0572 7.0425 7.0735 7.0580
Z - 0.2280 - 0.0693 - 0.9447 - 0.6190

None (11 series, 10 operators)
- 0.110818 - 0.072273 - 0.125546 - 0.026636

s 7.0518 7.0300 7.0723 7.0517
Z - 1.6437 - 1.0720 - 1.8621 - 0.5587

Differences
Zdiff (D - G) 1.7629 - 1.1725 1.7060 2.0354
Zdiff (D - N) 2.2802 0.3955 2.2942 1.3426
Zdiff (G - N) 1.5444 1.0258 1.5887 0.3980

III. Structural Analyses and Their Interpretation

A. Primary Results

The formal hypothesis with which this ensemble of mind/machine experi-
ments was undertaken was that the prior PEAR database, as represented in
Table 0 and Figure 4, would be statistically replicated in scale and character.
From the summary Tables F.1, G.1, P.1, and C.1 and from the cumulative devi-
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TABLE P.4
Feedback Effects in PEAR data

Measure BL LO HI

Digital (37 series, 12 operators)
0.018811 - 0.032811 - 0.024811 0.004000

s 7.0885 7.0232 7.0444 7.0338
Z 0.5117 - 0.8926 - 0.6749 0.1539

Graphic (195 series, 71 operators)
0.001908 0.012677 0.008015 - 0.002331

s 7.0582 7.0615 7.0667 7.0641
Z 0.1191 0.7917 0.5006 - 0.2058

None (18 series, 8 operators)
- 0.042444 - 0.002722 0.077333 0.040028

s 7.0442 7.1300 7.0509 7.0906
Z - 0.8053 - 0.0517 1.4673 1.0741

Differences
Zdiff (D - G) 0.4216 - 1.1344 - 0.8187 0.2233
Zdiff (D - N) 0.9533 - 0.4682 - 1.5896 - 0.7929
Zdiff (G - N) 0.8052 0.2796 - 1.2584 - 1.0875

TABLE C.4
Feedback Effects in Concatenated Data

Measure BL LO HI

Digital (94 series, 52 operators)
0.042915 - 0.029213 0.027234 0.028223

s 7.0659 7.0319 7.0654 7.0486
Z 1.8607 - 1.2666 1.1808 1.7306

Graphic (613 series, 220 operators)
- 0.000297 - 0.001057 - 0.004212 - 0.001577

s 7.0560 7.0562 7.0678 7.0620
Z - 0.0329 - 0.1170 - 0.4664 - 0.2470

None (43 series, 26 operators )
- 0.072000 - 0.003953 0.037744 0.020849

s 7.0610 7.0987 7.0819 7.0903
Z - 2.1115 - 0.1159 1.1069 0.8647

Differences
Zdiff (D - G) 1.7446 - 1.1368 1.2696 1.7015
Zdiff (D - N) 2.7914 - 0.6136 - 0.2553 0.2533
Zdiff (G - N) 2.0327 0.0821 - 1.1894 - 0.8991

ation graphs of Figures 1, 2, 3, and 5, we conclude that this hypothesis has not
been confirmed. Although the agreed upon primary indicators of effect, the
HI–LO ( ) mean shifts and their corresponding Z-scores, progress in the in-
tended directions in all three laboratory results and in their cross-laboratory
combinations, the effect size is essentially one order of magnitude smaller
than for the prior data (.0034 versus .0208) and thus falls well below any cred-
ible statistical significance (Z = 0.596 versus 3.809). Alternatively stated, if
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TABLE F.5
Runlength Effects in FAMMI Data

Measure BL LO HI

100-trial runs (198 series, 80 operators)
- 0.006313 0.001283 0.007687 0.003202

s 7.0515 7.0593 7.0659 7.0626
Z - 0.3973 0.0807 0.4837 0.2850

1,000-trial runs (52 series, 22 operators)
0.012942 - 0.036115 0.001192 0.018654

s 7.0682 7.0825 7.0921 7.0873
Z 0.4174 - 1.1647 0.0385 0.8507

Differences
Zdiff (H - T) - 0.5527 1.0733 0.1864 - 0.6271

TABLE G.5
Run-Length Effects in GARP Data

Measure BL LO HI

100-trial runs (173 series, 68 operators)
0.005590 - 0.035046 - 0.008850 0.013098

s 7.0566 7.0503 7.0736 7.0620
Z 0.3288 - 2.0615 - 0.5206 1.0896

1,000-trial runs (77 series, 33 operators)
0.000805 0.037844 - 0.006351 - 0.022097

s 7.0545 7.0224 7.0661 7.0443
Z 0.0316 1.4851 - 0.2492 - 1.2264

Differences
Zdiff (H - T) 0.1562 - 2.3795 - 0.0816 1.6249

the prior PEAR results are used as the standard of replication, this prediction is
refuted at a Z = - 2.87 level.

Given the sophistication and scope of the experimental and analytical pro-
cedures followed in both these contemporary studies and in the prior PEAR
work, and given the many examples of both “successful” and “unsuccessful”
high-quality research performed elsewhere over the past several decades
(Radin & Nelson, 1989), this stark failure to replicate reaffirms an enduring
and ubiquitous “reproducibility problem” that has long characterized mind/
machine interaction experiments of this class (Bierman & Houtkooper, 1981;
Shapin & Coly, 1985). Some resolution of this replication paradox would
seem to be essential to sustained progress in this field. To this purpose, various
categorical possibilities need to be acknowledged and assessed:

1. Some physical or technical conditions, essential to generation of the
anomalies, were not properly recognized and/or incorporated in the
replication program. The primary and secondary parameters so far in-



vestigated are not crucial to these phenomena and thus yield marginal re-
sults contaminated by artifact and obscured by random flux.

2. Certain subjective psychological conditions, essential to generation of
the anomalies, were not properly recognized and/or incorporated in the
replication.

3. The statistical analyses and/or their theoretical foundations deployed to
distinguish anomalous and normal behavior are inadequate for the task.

4. The basic assumptions underlying the conceptual framework within
which these experiments were designed are incorrect or inadequate to
encompass the phenomena involved.

5. The phenomena underlying the anomalies are intrinsically irreplicable
and unpredictable, even on a statistical basis and even with all objective
and subjective parameters closely controlled, and thus are inaccessible
to definitive scientific study.

The last, most radical possibility surely should be deferred until all other op-
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TABLE P.5
Runlength Effects in PEAR Data

Measure BL LO HI

100-trial runs (139 series, 49 operators)
0.009540 - 0.013626 0.001468 0.007547

s 7.0661 7.0690 7.0621 7.0655
Z 0.5030 - 0.7184 0.0774 0.5627

1,000-trial runs (111 series, 42 operators)
- 0.009207 0.027955 0.016514 - 0.005721

s 7.0561 7.0504 7.0625 7.0565
Z - 0.4338 1.3172 0.7781 - 0.3812

Differences
Zdiff (H - T) 0.6586 - 1.4609 - 0.5286 0.6592

TABLE C.5
Runlength Effects in Concatenated Data

Measure BL LO HI

100-trial runs (510 series, 197 operators)
0.002045 - 0.015104 0.000382 0.007743

s 7.0572 7.0589 7.0675 7.0632
Z 0.2065 - 1.5254 0.0386 1.1059

1000-Trial Runs (240 series, 97 operators)
- 0.001196 0.017246 0.005858 - 0.005694

s 7.0582 7.0484 7.0701 7.0593
Z - 0.0828 1.1948 0.4059 - 0.5579

Differences
Zdiff (H - T) 0.1852 - 1.8482 - 0.3129 1.0856



518 R. Jahn et al.

TABLE F.6
Series-Position Z-Scores in FAMMI Data

Series no. N BL LO HI

1 79 - 0.6335 - 1.5824 - 0.1781 0.9930
2 42 - 0.6873 0.2850 0.2091 - 0.0537
3 28 0.0651 0.1944 0.9221 0.5145
4 22 - 1.4731 0.7094 - 0.3814 - 0.7713
5+ 79 1.5829 0.0674 0.4750 0.2882

TABLE G.6
Series-Position Z-Scores in GARP Data

Series no. N BL LO HI

1 66 - 0.5879 - 0.0517 - 1.2969 - 0.8805
2 42 1.1227 - 2.2662 2.1226 3.1034
3 34 - 0.0476 - 1.2264 - 1.9581 - 0.5174
4 24 0.1433 2.5579 0.1652 - 1.6918
5+ 84 0.1225 - 0.4753 - 0.1796 0.2091

TABLE P.6
Series-Position Z-Scores in PEAR Data

Series no. N BL LO HI

1 66 1.0674 - 0.1349 0.8830 0.7197
2 23 1.7913 0.3870 - 0.2173 - 0.4273
3 14 - 0.1888 2.1980 1.3912 - 0.5705
4 13 0.0447 - 0.2642 0.2679 0.3763
5+ 134 - 1.3267 - 0.2268 - 0.2758 - 0.0347

TABLE C.6
Series-Position Z-Scores in Concatenated Data

Series no. N BL LO HI

1 211 - 0.1195 - 1.0726 - 0.3405 0.5177
2 107 1.1033 - 1.0618 1.3601 1.7126
3 76 - 0.0097 0.2411 - 0.1529 - 0.2786
4 59 - 0.7872 1.9405 - 0.0017 - 1.3734
5+ 297 - 0.0096 - 0.3703 - 0.0358 0.2365

tions are exhausted. Selection among the remaining categories may possibly
be informed by the internal structure of the experimental databases, e.g., from
the secondary parameter breakdowns of the previous section, the higher mo-
ments of the distributions, or the sequential correlations in the data streams. In
the prior PEAR studies, such attention to structural details of the data distribu-
tions proved instructive in analysis and interpretation of the experimental



databases, which in that case contained strong primary results. Indeed, most of
the salient features of these prior results devolved from such structural assess-
ments, and much of our admittedly tentative and incomplete understanding of
the basic nature of the phenomena is based on them. It behooves us, therefore,
to establish whether the contemporary replication database, despite its mini-
mal primary yield, nonetheless also embodies internal structural aspects that
depart significantly from chance expectation. If so, these could uncover some
other form and degree of anomalous effect, or indicate flaws in the experimen-
tal design that reduced the overall yield.
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TABLE F.7
Experimenter Effects in FAMMI Data

Measure BL LO HI

Experimenter number 1 (37 series, 8 operators)
0.025351 0.044757 0.001324 - 0.021716

s 7.0567 7.0840 7.0601 7.0721
Z 0.6896 1.2175 0.0360 - 0.8354

Experimenter number 2 (109 series, 15 operators)
- 0.010220 - 0.023670 0.013651 0.018661

s 7.0673 7.0583 7.0876 7.0729
Z - 0.4772 - 1.1052 0.6374 1.2322

Experimenter number 3 (80 series, 50 operators)
0.015900 - 0.008825 - 0.001388 0.003719

s 7.0316 7.0780 7.0534 7.0657
Z 0.6360 - 0.3530 - 0.0555 0.2104

Experimenter group 4 (24 series, 46 operators)
- 0.069708 0.000250 0.006583 0.003167

s 7.0741 7.0138 7.0751 7.0444
Z - 1.5272 0.0055 0.1442 0.0981

Chi-squared on Zs with 4 df (90% CE: 0.71–9.49)
2 3.4402 2.8283 0.4314 2.2701

Note:  df = degrees of freedom.

TABLE G.7
Control Mode Effects in GARP Data

Measure BL LO HI

Auto (193 series, 68 operators)
0.011927 - 0.015824 - 0.012176 0.001824

s 7.0529 7.0363 7.0685 7.0524
Z 0.7410 - 0.9831 - 0.7565 0.1602

Manual (57 series, 25 operators)
- 0.022333 - 0.001667 0.005789 0.003728

s 7.0661 7.0603 7.0808 7.0705
Z - 0.7541 - 0.0563 0.1955 0.1780

Differences
Zdiff (A - M) 1.0164 - 0.4200 - 0.5330 - 0.0799
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B. Structural Anomalies

1. Structural parameters. The data tables presented in section II.B.3 sum-
marize our attempt to collate the results of the three laboratories, individually
and collectively, with various experimental parameters, in the hope that any
significantly deviant subsets or disparities between alternative modalities
might illuminate the most important objective or subjective correlates. Specif-
ically studied, to varying degrees, have been the following structural cells: 

Operator Parameters
Gender: Male; Female; Multiple

Types: Formal; Staff; Student; Visitor
Protocol Parameters

Assignment of intention: Instructed; Volitional
Feedback modalities: Digital; Graphic; None

Machine control: Automatic; Manual
Run lengths: 100 trials; 1000 trials

Sequential Effects
Series-position

Experimenter Effects
Individuals by code number

As already noted, a substantial number of suggestive disparities have indeed
appeared in the data subsets. However, because of the number of cases exam-

TABLE G.8
Effects by GARP Operator Types

Measure BL LO HI

Formal operators (169 series, 41 operators)
- 0.005089 - 0.028266 - 0.002923 0.012672

s 7.0621 7.0330 7.0770 7.0550
Z - 0.2958 - 1.6433 - 0.1699 1.0418

Staff operators (30 series, 6 operators)
0.053967 0.008167 - 0.043100 - 0.025633

s 7.0115 7.0383 7.0532 7.0457
Z 1.3219 0.2000 - 1.0557 - 0.8880

Student operators (41 series, 17 operators )
- 0.033732 0.044415 - 0.019000 - 0.031707

s 7.0448 7.0622 7.0741 7.0681
Z - 0.9659 1.2718 - 0.5441 - 1.2840

Visitor operators (10 series, 5 operators)
0.165300 - 0.043800 0.054600 0.049200

s 7.1276 7.1166 7.0174 7.0670
Z 2.3377 - 0.6194 0.7722 0.9840

Chi-squared on Zs with 4 df (90% CE: 0.71–9.49)
2 8.2328 4.7418 2.0357 4.4910
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Fig. 1. FAMMI cumulative deviations.

Fig. 2. GARP cumulative deviations.
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Fig. 3. PEAR Laboratory cumulative deviations.

Fig. 4. Prior PEAR cumulative deviations.



ined, some seemingly meaningful distinctions may appear by chance, so we
cannot interpret the several large Z-scores in the structural tables until we have
somehow corrected for the multiplicity of tests, to learn whether these are in-
deed larger or more numerous than would be expected by chance for the num-
ber of analyses that have been generated.

The discussion of sequential and experimenter effects will be deferred to a
later section. For the moment, we will consider only the operator and protocol
parameters, as they are broken down in Tables F.2 through F.5, G.2 through
G.5, and P.2 through P.5. These tables report a total of 124 mean-shift Z-scores
for the various intentional condition subsets. More importantly, 76 Zdiff scores
for differences between parameter conditions are presented. Since any struc-
tural anomalies in these parameters would appear as differences of perfor-
mance between different parameter conditions, the 76 Zdiff scores are obvious-
ly the crucial population to test. We may also check the population of
mean-shift Z-scores, but this test is less central to the examination of structure,
first because the statistical resolution is relatively weak since each Z involves
only one half of a parameter comparison, and second because the absence of
an overall intentional effect makes significant mean shifts in these full subsets
much less likely.

We might naively suppose that we can perform the requisite multiple-tests
correction simply by comparing the large population of Zdiff scores to the theo-
retical Z distribution. For example, since the subset comparisons are not di-
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Fig. 5. Cumulative HI–LO differences for all three labs.
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rected, i.e., we do not have a prior hypothesis regarding the sign of any Zdiff, the
presence of structure might be expected to inflate the absolute magnitude of
some Zdiff scores, and therefore the standard deviation of the Zdiff score distribu-
tion. And, indeed, when we examine the standard deviations in these popula-
tions, we find that the 76 Zdiff values have a standard deviation of 1.258, rather
than the theoretically expected value of 1, a result unlikely with p = 0.00098.

At face value, this might seem strong evidence for structure in the Zdiff popu-
lation. The flaw in such a conclusion is that the analysis presupposes that the
scores comprising the population are mutually independent, which they are
not. To begin with, each score in the column of the data tables is strongly
correlated with the scores in the HI and LO columns. The breakdown in the
feedback parameter, having as it does three levels, produces a set of three para-
meter differences, each strongly correlated with the other two. Worse, there
are additional correlations between Z-scores in different parameter compar-
isons, because the populations are not in uniform proportion. For example, the
fraction of instructed-assignment series generated by females is not necessari-
ly the same as the fraction of volitional-assignment series generated by fe-
males, because of the freedom of operators to choose secondary parameters.
When these proportions are not equal, Zdiff (I - V) will acquire an intrinsic cor-
relation, positive or negative, with Zdiff (F - M). Similar considerations apply
among almost all of their parameter sets.

The presence of these correlations, of variable magnitude and sign between
different Zdiff scores, complicates the comparison with theory immensely, so
much so that the attempt was abandoned. Instead, it was decided to determine
the theoretical values of the population-summary parameters empirically
through a Monte Carlo procedure, the details of which are given in the next
section.

2. Monte Carlo simulations.

(a) General treatment. We wish to determine whether the populations of Z-
scores, especially the population of 76 Zdiff scores, emerging from Tables F.2
through F.5, G.2 through G.5, and P.2 through P.5, depart from the expected
chance distribution for this array of tests when applied to random data. To de-
termine this chance distribution, we employ a Monte Carlo procedure which in
essence involves repeatedly performing the analysis on data that are guaran-
teed to be random.

The analysis programs that were used to process the empirical data for the
above tables take, as input, the indicial information describing the parameters
for each series, and the actual data generated in the series. For the Monte Carlo
process, we submit to those programs exactly the same indicial information,
along with ersatz data constructed with a numerical pseudorandom algorithm
to match the null-hypothesis distribution for these experiments. The fact that
we are using the indicial information from the actual experiments guarantees
that we reproduce the correct correlation structure in the output Z population.



(We use simulated data rather than simply reordering the actual data, because
if structure does exist in the actual data, the statistics of the raw data must nec-
essarily be distorted to some extent. Randomly reordering the raw data, as is
often done in Monte Carlo applications, does not serve our purpose in the cur-
rent case. A random reordering breaks the connection between the data and the
indicial information but leaves intact—merely relocated—the shifted values
that constitute the structural anomaly and therefore does not give a reliable
measure of the null-hypothesis distribution.)

Thus, each iteration of the Monte Carlo process produces its own population
of 76 Zdiff scores. (It also produces a population of 124 mean-shift Z-scores,
which are also analyzed and reported for the sake of completeness.) This
process is then repeated a total of 5000 times to ensure that the distribution pa-
rameters are well estimated. Any measure—e.g., the standard deviation de-
scribed above—that characterizes the population of Zdiff scores produced by
the actual data thus can be compared with 5000 samples from its null-hypoth-
esis distribution produced by the Monte Carlo procedure.

Table M.1 presents the results of this comparison with the Monte Carlo pop-
ulations for several such summary measures. Each of these measures is a
slightly different quantification of the qualitative hypothesis that the popula-
tion of Zdiff scores in the actual data has larger absolute values than predicted
under the null hypothesis. The measures presented are the standard deviation,
discussed above; the largest absolute value of any Zdiff in the population; and
the number of Zdiff scores in the population exceeding each of three thresholds.
The “population” referred to here is always the population of 76 Zdiff values (or
in Table M.1a, 124 mean-shift Z-scores) produced by a single instance of the
analysis, real or simulated (not the population of 5000 simulated instances).

The columns of Table M.1 present, first, the value of the named measure in
the actual data; next, the mean and standard deviation of the named measure
across the 5000 Monte Carlo iterations; and next, the number of Monte Carlo
iterations where the value of this measure exceeds the value in the actual data.
(The number in this column, when divided by 5000, is a form of empirical
upper-tail p-value describing the position of the actual data in the Monte Carlo
distribution.) A final column presents measure values obtained when the actu-
al data are replaced, not by simulated data but by calibration data from the ex-
perimental apparatus. This is included as a precaution against the possibility
that differences between real and simulated data might derive from properties
of the physical data source, rather than from an experimental effect. The actu-
al calibrations from Freiburg, Giessen, and Princeton were used to replace the
experimental data for their respective laboratories, in this calculation.

From Table M.1, we note that, as expected, the population of 124 mean-
shift Z-scores is indistinguishable from the null hypothesis distribution as con-
structed by the Monte Carlo process. The Zdiff Table M.1b, however, is much
more interesting. For example, the standard deviation of the Zdiff population
now yields a p-value of .014, quite different from the erroneous calculation
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mentioned above, but clearly indicative of anomalous structure. Although con-
ceptually the standard deviation increase is the primary indicator of a modified
Zdiff distribution, the other measures can provide additional information about
the nature of the modification. However, the introduction of these different
measures might suggest that the question of multiple analysis has appeared yet
again, requiring some form of Bonferroni correction. This multiplicity is an
unavoidable consequence of the initial exploratory decision to examine sever-
al specific ways in which the actual population of Zdiff scores might depart from
the null hypothesis prediction. It is possible, however, to render irrelevant all
issues of multiple testing by calculating a single summary statistic encompass-
ing all five measures presented in Table M.1.

As the table shows, each of the five measures has a mean and standard devi-
ation determined from the Monte Carlo population. A normalized score can be
calculated for each parameter relative to this distribution by subtracting the
distribution mean from the observed value and dividing the difference by the
standard deviation. (We do not call this normalized score a Z-score because
some of the measures are not normally distributed.) The sum of these normal-
ized scores is a single statistic that weights equally the departure from Monte
Carlo norms in each of the five measures. This sum can be calculated not only
for the actual data but also for each individual iteration of the Monte Carlo
simulation. Comparing this combined-measures summary statistic in the real
data with the distribution of values in the 5000 Monte Carlo iterations gives us
a single, definitive p-value for the degree to which the real data stand out from
the null hypothesis: There are 109 iterations that exceed the real data in the
summary statistic, and 0 exact ties, leading to a p-value of .022. Since this is a
single-test result requiring no correction, we may safely conclude that the pop-
ulation of Zdiff scores in the PortREG database can be distinguished from the
null hypothesis at a p = .022 level. Thus the apparent structural anomalies
noted in Tables F.2 through F.5, G.2 through G.5, and P.2 through P.5 are, to
this same level of confidence, real differences rather than statistical artifacts.

Figures 6, 7, and 7a represent these results in an instructive graphical form.
Figure 6 shows the positions of the full subset empirical data Z-scores on the
Monte Carlo calculated distributions. As expected, there is little departure
from chance behavior here, save a slight positive shift of the largest Z-value. In
Figure 7, however, substantial displacements of the empirical Zdiff values with
respect to the Monte Carlo background are clear by each of the five criteria,
reaffirming the numerical values mentioned above. Figure 7a, shows similar
major displacement of experimental value of the composite statistic just de-
scribed, with respect to the Monte Carlo distribution.

While this analysis cannot guarantee that any particular subcells are aber-
rant, it can identify a hierarchy of such disparities that are most likely to repre-
sent legitimate structural anomalies. For example, Table M.2 lists the ten most
prominent departures of the subcell difference Z-score from their correspond-
ing Monte Carlo simulations, indexed by direction of intention and laboratory.



The secondary parameters are given in the order that makes the Zdiff positive;
thus, the first entry lists “V - I,” denoting that the volitional data have a larger

-effect than the instructed. From Table M.1b, we know that the number of
Zdiffs in the range above 2.0 to be affected by chance is about 3.5; hence, it is
likely that some six or seven of the entries in Table M.2 correspond to real,
nonrandom differences in operator achievements.

(b) Most favorable cells. While such Monte Carlo treatments provide no
guarantees that any given one of these categories in fact entails anomalous re-
sults, they can provide guidelines for the most profitable cells to study more
directly, leading to identification of the more important secondary parameters,
and hence possibly to superior further experiments. As just one example, the
data subset comprising all of the trials performed at the GARP laboratory
using volitional assignment of direction of intention, nongraphic feedback, au-
tomatic machine control, and 100-trial runs shows a significant yield in the
HI–LO separation of  = 0.488 ± 0.0241 (Z = 2.02), whereas the subset of all
data delineated by instructed assignment, graphic feedback, automatic control,
and 1000-trial runs shows a strong negative yield of = - 0.2308 ± 0.0913 (Z =
- 2.53). The source of this disparity may be further localized by noting that the
combination of all GARP instructed, graphic subsets yields = 0.1010 ±
0.0323 (Z = - 3.13), suggesting that the subjective parameters of volitional/in-
structed assignment and graphic/nongraphic feedback were particularly perti-
nent to GARP operator performance. Such observations then prompt examina-
tion of the corresponding subsets in the FAMMI and PEAR databases to see if
such effects appear in these venues, as well.

To facilitate such interlaboratory cell comparisons, it is necessary to devise
a standard procedure for dividing all of the PortREG databases into commen-
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TABLE M.1
Comparison of All Laboratory Data with 5000 Monte Carlo Simulations

Measure Data 5000 Monte Carlos No. M. C. > data Calib. data

(a) Distributions of 124 mean-shift Z-scores
SD of Z 0.961 0.980 + 0.129 2659 0.888
Largest |Z| 2.941 2.691 + 0.437 1289 2.705
No. (of 124): |Z| > 1.5 16 16.702 + 6.932 2518.5a 13
No. (of 124): |Z| > 2.0 5 5.725 + 4.037 2443 a 5
No. (of 124): |Z| > 2.5 1 1.572 + 1.950 2532 a 1

(b) Distributions of 76 Zdiff scores
SD of Zdiff 1.258 0.995 + 0.114 68 0.937
Largest |Zdiff| 3.184 2.597 + 0.432 452 2.901
No. (of 76): |Zdiff| > 1.5 19 10.206 + 3.834 91.5a 7
No. (of 76 ): |Zdiff| > 2.0 10 3.540 + 2.299 49.5a 4
No. (of 76 ): |Zdiff| > 2.5 2 1.003 + 1.189 961a 1

a Since these parameters are discrete, an exact match can occur between the value in the actual
data and the value in a Monte Carlo iteration.  Therefore, the number reported here is the number
of Monte Carlo values strictly greater than the data plus one half the number of exact matches;
this is a standard approach to calculating tail populations with discrete data.
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surate subsets that control for various possible confounds. As already noted,
many of the subset parameters are mutually confounded due to unequal subset
sizes. For example, the GARP data appear to show differences between inten-
tional assignment modes and also between feedback modes. Since the propor-
tions of a given assignment mode are not guaranteed to be the same in all feed-
back modes, when we only dissect the data according to one parameter at a
time we cannot know whether (a) a real difference between assignment modes
drives an apparent difference between feedback types, (b) a real difference be-
tween feedback types drives an apparent difference between assignment
modes, (c) both parameters are independently important, or (d) both parame-
ters are interdependently important; i.e., that the difference in performance
might not be associated with either parameter in isolation but only appears
when they jointly take on appropriate values. To distinguish these cases, we
need to decompose the data according to several parameters at once, creating
“cells” that are consistent according to several secondary parameters. This has
two benefits. First, we can distinguish among cases (a) through (c), by making
unconfounded tests for each parameter. Second, we can identify case (d) if the
differences between cells contain information not explicable in terms of the
unconfounded effects of isolated parameters.

Ideally, one should break down the data according to all secondary parame-
ters. Unfortunately, there are so many of these that to make such a complete
subdivision would result in very small data subsets with correspondingly poor
statistical resolution. Moreover, there is a significant risk that some cells in
such a complete breakdown would be entirely empty, appreciably complicat-
ing the interpretation. As a balance between rigor and practicality, the follow-
ing compromises are made:

1. Only “optional” parameters subject to operator choice are considered.
Gender, fixed for each operator, is ignored. Series position, also not op-
tional, and in any case showing hard-to-interpret variations, also is ig-
nored.

2. Only parameters for which all three laboratories examined the parameter
are considered. This reduces the selection to assignment mode, run
length, and feedback.

3. Because each laboratory has a huge majority of its data in the graphic
feedback condition, the other two modes are collapsed into a single
“nongraphic” feedback category.

The result of these compromises is the eight-cell (2 2 2) breakdown used
in Table C.7 and Figures 8–11. In these, a three-letter code is used to indicate
the parameter values: the first letter, I or V, refers to instructed or volitional as-
signment; the second, G or N, to graphic or non-graphic feedback; the third, H
or T, to 100-trial or 1000-trial runs. The values plotted on the figures are ab-
solute mean shifts in direction of intention for HI, LO, BL, and . The Z-scores
tabulated in Table C.7 are based only on the -effect, but all four intentional
conditions are plotted in the figures.



Returning to our particular example, the comparisons of performance under
the volitional, nongraphic, 100-trial protocol (VNH), and the instructed,
graphic, 1000-trial protocol (IGT), are seen to be particularly inconsistent
across the three laboratories. This has encouraged further, ad hoc experimen-
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Fig. 6. Mean-shift Z-scores vs. Monte Carlo populations .
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tation, which is now in progress, and has prompted some new initiatives in the-
oretical modeling, which cannot be detailed here.

Similar structural exercises can be attempted in terms of other discrimina-
tors suggested by the Monte Carlo “most prominent” list above, such as opera-

Fig. 7. Difference Z-scores vs. Monte Carlo populations .



tor gender, or single vs. multiple operators, both of which revealed striking dis-
parities in the prior PEAR studies. In the replication studies, however, these ef-
fects are not so clearly evident. With reference to Tables F.2, G.2, and P.2, the
only suggestive disparities appear in the PEAR data alone, and here most
prominently in the single- vs. multiple-operator comparison, which was not
explored by the other laboratories. Nonetheless, Table C.7 also presents a set
of rudimentary correlation coefficients that indicate a much closer correspon-
dence of the cell-by-cell result patterns between GARP and PEAR than be-
tween FAMMI and either other laboratory.

Obviously, it would be most desirable if it were possible by some means to
extract from these structural cell results a completely unconfounded set of cor-
relations with individual secondary parameters. Some form of analysis of vari-
ance (ANOVA) suggests itself, and indeed such has been employed twice in
analyzing the prior PEAR data (Nelson et al., 1991, 2000), but even with the
much higher overall yield of that database, the insights gained thereby did not
vastly exceed those acquired from more directed ad hoc analyses. Nonethe-
less, once one has the cell scores, it is straightforward, although tedious, to
construct the unconfounded secondary parameter effects. For example, to as-
sess the effect of assignment mode, one must first compare the four pairs of
cells that differ only in this parameter, i.e., IGH vs. VGH, IGT vs. VGT, INH
vs. VNH, and INT vs. VNT. Each of these comparisons can be reduced to a dif-
ference Z-score using the formula at the end of section II.1. The four Z-scores
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Fig. 7a. Composite statistic for difference Z vs. Monte Carlo.
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so produced then can be combined into a single Z giving the overall effect of
that parameter, according to the composition rule:

Zc =

Á
NX

i= 1

Z i Ö ni

! .
vuut

NX

i= 1

ni (2)

where Zc denotes the composite Z for a set of scores, Zi, all measuring the same
effect on databases of sizes ni, i = 1,…,N. In this manner it is possible to extract
unconfounded correlations with certain specific secondary parameters, with
the results displayed in Table C.8.

Particular further examples could be cited, but the broader point at issue is
that the combination of the Monte Carlo simulations of the cellular data sub-
sets with subsequent specific analyses of the most suggestive cells may help to
localize the most pertinent objective and subjective parameters, and to refine
future experiments to optimize these factors. We feel that only through such a
detailed and disciplined process, tedious as it may be, is there hope for more ef-
fective and replicable experimentation, leading to better understanding of the
phenomena.

3. Series-position effects. One possible structural indicator not explicitly
explored in the Monte Carlo comparisons but readily accessed within the vari-
ous laboratory databases, commonly termed “series-position effects,” relates
to the evolution of operator performance as a function of the number of exper-
imental series performed. The prior PEAR data displayed a remarkably ubiqui-
tous and consistent trend for scores to be highest for the first series attempted,
then to deteriorate for the next two series, then to return to higher performance
on the fourth, fifth, and subsequent series (Dunne et al., 1994). With reference
to Tables F.6, G.6, and P.6, some such serial oscillations of performance are ap-
parent, particularly in the GARP and PEAR data, but these are far from consis-
tent across the three laboratories. Nonetheless, the composite data (Table C.6)
also show some series-position pattern, but quite different from that of the
prior PEAR results.

TABLE M.2
Most Prominent Z-Score Differences from Monte Carlo Comparisons

Parameter Intention Lab Zdiff

ASG V–I GARP 3.184
GEND M–F BL FAMMI 2.764
RUNL T–H LO GARP 2.380
FDB D–N HI GARP 2.294
ASG I–V LO GARP 2.284
FDB D–N BL GARP 2.280
ASG V–I HI GARP 2.219
FDB D–G HI FAMMI 2.083
MULT 2–1 PEAR 2.052
FDB D–G GARP 2.035



As a supplementary indicator, standard 2 tests applied to these patterns, com-
puted relative to chance expectation and relative to their respective empirical
mean values, are displayed in Table C.9, along with their corresponding proba-
bilities of chance occurrence. The last line presents the same analysis of the prior
PEAR data. Clearly, only the GARP data exhibit a credible series-position
pattern, albeit quite different in form than the prior PEAR results. Namely, the
highest scoring in that replication is occurring in the second series, rather than
in the first, and the lowest scoring in the fourth, rather than the third. In other
words, the series pattern has shifted by one series.

4. Operator-specific features. Another structural anomaly identified in the
prior PEAR data was the persistence of individual operator accomplishment
features or “signatures,” apparent over several series of effort, or over entire
databases. Since few of the operators involved in the replication studies pro-
duced sufficient data for us to pursue this tendency solely in that context, we
have modified the question to query whether those five operators who have ap-
preciable databases in both the prior PEAR experiments and the replication
study show similarities of performance between the two applications. For each
of these operators, we calculate a Z-score for the difference in their 
HI–LO performance between the old and new experiments, using the Zdiff for-
mula in Equation 1. We use the same formula to calculate differences between
their performances in the three individual intentions, HI, LO, and BL. The sum
of the squares of those Zdiffs becomes, for each operator, a 2 with 3 df measur-
ing the overall change in performance across all three intentions between the
original experiment and the replication. The results, along with the associated
chance probabilities, are presented in Table P.7. Two potentially instructive
features are apparent. On the one hand, the first four operators, both individu-
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TABLE C.7
Z-Scores in Secondary Parameter Cells, by Laboratory

Parametera FAMMI GARP PEAR All 3 labs

IGH - 0.1786 - 2.2266 - 0.0242 - 0.9242
IGT 0.9816 - 2.2378 - 0.3176 - 0.5417
INH 1.0979 - 0.7526 - 0.9888 - 0.3014
INT 0.5841 1.0941 0.4109 0.9127
VGH 0.0521 0.9335 0.8102 0.8740
VGT 0.2443 - 0.4092 - 0.7436 - 0.6242
VNH 0.4738 2.0454 1.3287 2.4720
VNT - 0.4919 - 0.5920 0.6725 - 0.1659

Correlation coefficients of these response patterns
FAMMI–GARP FAMMI–PEAR GARP–PEAR

- 0.0061 - 0.4500 0.6501
Z( ) - 0.0143 - 1.1188 1.7452

Note: = correlation coefficient; = 1 = perfect correlation; = - 1 = perfect anticorrelation;
Z( ) = standard normal deviate corresponding to value of .
a I = instructed protocol; V = volitional protocol; G = graphic feedback; N = no feedback; H = 100-
trial runs; T = 1000-trial runs.



534 R. Jahn et al.

Fig. 8. FAMMI group data split by assignment (I,V), feedback (G,N), and run length (H,T).

Fig. 9. GARP data split by assignment (I,V), feedback (G,N), and run length (H,T).
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Fig. 10. PEAR data split by assignment (I,V), feedback (G,N), and run length (H,T).

Fig. 11. All data split by assignment (I,V), feedback (G,N), and run length (H,T).
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ally and collectively, performed remarkably similarly on the two experiments.
On the other hand, Operator E displays a stark difference in performance be-
tween the prior PEAR and replication efforts that is virtually an inversion or
“antireplication” of the prior “signature.” (It may be worth noting that this op-
erator repeatedly expressed strong resistance to being asked to validate a prior
achievement through replication.) Clearly, these contradictory results cannot
be resolved further without considerably more operator-specific data, but the
subjective issue raised could ultimately prove important.

Other aspects of operator-specific structural anomalies have also been ex-
plored by similar 2 techniques. For example, the possibility that a mixture of
strong performances in the intended directions and in the directions opposite
to intentions among the individual operators may cancel one another in the
overall yield, thus obscuring the operator-level effects in the database, can be
checked by a 2 calculation encompassing all operators at the three laborato-
ries, under all intentions. Specifically, by squaring the individual operator Z-
scores (thus obtaining a sign-independent quantity) and adding these across all
operators, we construct a 2 with degrees of freedom equal to the number of
operators. Table C.10 presents such results for the three laboratories along with
their associated chance probabilities (in parentheses). Because the prior
PEAR experiments indicated a gender difference in the tendency toward idio-
syncratic performance, the databases are subdivided by gender as well as by
laboratory.

Since the 2 tests on the three individual intentions are mutually indepen-
dent, they can be collected in a combined value indicative of the overall depar-
ture from chance behavior in all three intentions (last column). No elevated
values that would suggest idiosyncratic operator performance appear. To the
contrary, the PEAR female operators show a strikingly depressed 2, especial-
ly in the LO intention, that compounds to an extraordinarily diminished value
across all three intentions (39.33 on 66 df; p = .996). Considered as an improb-
ably small 2, this corresponds to p = .004, which we must immediately correct
to .008 since we are willing to consider both unusually large and unusually
small 2. Bonferroni adjustment of this value for the seven independent sub-
sets (two genders each at GARP and FAMMI, three at PEAR) still leaves a
suggestive p = .051. Thus, there are moderate grounds for suspecting that this
particular operator population is somehow producing performances that clus-
ter too tightly about zero yield. Such calculations have been repeated on a se-
ries-by-series basis. Again, only the PEAR females show significant anom-
alies that survive the multiple-testing adjustments. It also may be worth noting
that the data collected on series-position effects (Tables F.6, G.6, P.6, and C.9)
and on operator-specific features (Tables P.7 and C.10) show a polyglot nature
of above-chance occurrences similar to those covered in the Monte Carlo treat-
ment (Table C.7).

5. Standard deviations. A different form of structural irregularity that may
have indicative value can be detected in the individual laboratory and compos-



ite databases. Even cursory examination of the tables of section II.B reveals
many instances where the trial-level standard deviations are less than the theo-
retical value of 7.071. This, of course, might be an artifactual result of a flaw in
the random noise sources, so these standard deviation figures should be com-
pared not with the theoretical value, but with an empirical value derived from
the concurrent calibrations of the instruments (cf. Appendix I). Since the three
calibration datasets have consistent means and standard deviations, a pooled
estimate of the latter may be constructed, yielding s = 7.0710 with an empiri-
cal uncertainty of ±0.0028. Table C.11 reports Z-scores for the difference be-
tween the trial-level standard deviations of the active experimental data and
this calibration estimate.

This method of comparison to an empirical standard technically makes them
Student’s t-scores rather than Z-scores. However, since there are well over
10,000 degrees of freedom in even the smallest datasets examined, the differ-
ence between the Z and t distributions safely may be neglected. By either stan-
dard, we find a statistically robust difference between the active experimental
data and the calibration data in the composite across all three laboratories that
is driven by substantial depressions in the LO and BL conditions. The prior
PEAR finding of significantly higher experimental standard deviations for fe-
male operators compared to males (Dunne, 1998) is not sustained in magni-
tude by the replication data, although virtually all of the individual laboratory
results show slight separations in this direction.

6. Counts of successful operators and series. In addition to the trial-score
distribution criteria on which all of the preceding tabulations and discussions
are predicated, the data also have been examined in terms of the fraction of ex-
perimental series and the fraction of operators, whose results conform to any
extent with the direction of intention. Although those perspectives had proven
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TABLE C.8
Difference Z-Scores of Unconfounded Secondary Parameters

Parameter test FAMMI GARP PEAR All 3 labs

Assignment (I–V) 0.4224 - 2.9204 - 0.9689 - 1.2611
Feedback (G–N) - 0.7343 - 1.0871 - 0.4485 - 1.7823
Runlength (H–T) - 0.4275 1.3792 0.5599 0.9331

TABLE C.9
2 Tests for Series-Position Z-Scores

Laboratory 2 (vs. theory); 5 df a p of 2 2 (vs. empirical mean); 4 df p of 2

FAMMI 1.9316 .859 1.7431 .783
GARP 13.5799 .019 13.5699 .009
PEAR 1.1688 .948 1.1680 .883
All 3 labs 5.2207 .390 5.0880 .278
Prior PEAR 27.3385 .00005 18.2453 .001
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instructive in some of the prior work, they clearly are not independent of the
mean-shift values and in this replication study have added little new insight.
Nonetheless, full tabulations of these quantities are available on request.

IV. Summary Comments

As described in the introductory section, this coordinated replication study
was the first collaborative research project attempted by the Freiburg, Giessen,
and Princeton laboratories, as much to test the viability of the consortium con-
cept, structure, management, and operations strategy as to create a major new
database in mind/machine anomalies. By the former criterion, the project has
been undeniably successful in that methods for provision of common experi-
mental equipment, acquisition and reduction of experimental data, and analy-
sis and interpretation of results have been well established and are available for
deployment in subsequent research endeavors. Visitation and exchange of per-
sonnel among the laboratories at both the staff and management levels occur
frequently, and the electronic communication channels that enable sharing of
data and ideas function on a regular basis. In short, this first project has
demonstrated that this ambitious consortium can function productively on
such collaborative research enterprises.

As far as the replication results themselves are concerned, we are left with
an empirical paradox. Whereas the prior PEAR experiments clearly displayed
anomalous secular trends in REG output distribution means in correlation with
operator intention, the three-laboratory replications, which employed essen-
tially similar equipment and protocols, failed by an order of magnitude to
replicate the primary correlations. Yet, these replication studies presented in-
stead a substantial pattern of structural anomalies related to various secondary
parameters, to a degree well beyond chance expectation and totally absent
from the calibration data. To borrow a fluid mechanical metaphor, it is as if the
influence of operator intention now was manifesting itself as a structural “tur-
bulence” in the output data of the replication, rather than in a more orderly dis-
placement of the data streams as was found in the prior PEAR studies.

With the various ad hoc examinations of these structural details described in
sections II and III in hand, our search for some understanding of this substantial
change in the character of the anomalous responses of the machines to operator

TABLE P.7
Consistency of Operators Between Prior PEAR and Replication Experiments

Operator 2 (p) Z (p [2-tail])

A 1.564 (.67) 1.049 (.29)
B 0.200 (.98) 0.125 (.90)
C 0.934 (.82) - 0.868 (.39)
D 0.460 (.92) 0.158 (.87)
E 14.035 (.003) 3.255 (.001)



intention may be aided by systematic reconsideration of certain explicit and im-
plicit assumptions with which the replication studies were undertaken:

1. Source independence: The anomalous effects would manifest in the
same form and scale on the PortREG sources as they had on the original
PEAR benchmark machine.

The prior PEAR data reported in Table 0 had been generated using a far
more expensive and complex REG device that was replete with an array of
failsafe controls, interior checkpoints, and other protections against short- and
long-term deviations from strictly random behavior, that would unequivocally
guarantee the integrity of the experimental results. The shift to the much sim-
pler, less expensive, and more portable PortREG equipment seemed justified
on the basis of its earlier successful deployments in other PEAR-based experi-
ments, most notably our FieldREG studies (Nelson et al., 1996, 1998), and an
extensive body of past evidence that comparable anomalous results could be
obtained utilizing categorically different random physical sources (Jahn et al.,
1997; Schmidt & Pantas, 1972). Yet, since that time certain other applications
of PortREG equipment also have failed to produce results comparable with the
prior benchmark findings, raising some questions about its consistency of sen-
sitivity to operator intention (Jahn et al., 2000).

It has been suggested by one of PEAR’s long-term operators that this reduc-
tion in effect may not be attributable to physical differences in the noise
sources, per se, but to the shift of the REG unit from its original central focus
in the experimental configuration to one where it appears to play only a pe-
ripheral supporting role to the computer that now dominates the operator’s at-
tention. Specifically, in the prior PEAR experiments digital feedback was pre-
sented as an LED display on the face of the REG device itself, with the
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TABLE C.10
Operator Performance 2 Values (with Associated Probabilities)

Dataset dfa BL LO HI Combined a

FAMMI
Female 40 49.05(.15) 35.62(.67) 46.43(.22 ) 32.95(.78 ) 131.09(.23)
Male 40 32.75(.79) 45.56(.25) 32.55(.79 ) 34.26(.73) 110.86(.71)
All 80 81.80(.42) 81.18(.44) 78.98(.51 ) 67.21(.85) 241.96(.45)

GARP
Female 34 34.16(.46) 31.82(.57) 31.34(.60 ) 28.30(.74) 97.33(.61)
Male 35 43.45(.15) 34.80(.48) 38.71(.31 ) 40.37(.25) 116.96(.20)
All 69 77.61(.22) 66.62(.56) 70.05(.44 ) 68.67(.49) 214.28(.35)

PEAR
Female 22 12.50(.95) 7.55(.998) 19.28(.63 ) 13.07(.93) 39.33(.996 )
Male 36 33.74(.58) 41.42(.25) 32.07(.66 ) 40.53(.28) 107.23(.50)
Co-operator 20 19.85(.47) 23.54(.26) 12.42(.90 ) 18.38(.56) 55.81(.63)
All 78 66.09(.83) 72.51(.65) 63.77(.88 ) 71.98(.67) 202.37(.93)

a The degrees of freedom for the “Combined” column,which sums up the mutually independent
contributions of BL, LO, and HI, are triple the number listed in the “df ” column.
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TABLE C.11
Z-Scores for Trial-Level Standard Deviations, by Laboratory and Gender

Data BL LO HI

All FAMMI - 1.5449 - 0.6599 0.0309 - 0.4301
Male - 1.2757 - 0.7104 - 0.2837 - 0.6886
Female - 0.9388 - 0.1895 0.4019 0.1466

All GARP - 1.4539 - 2.8142 0.0257 - 1.9009
Male - 1.4974 - 2.0454 0.4544 - 1.1032
Female - 0.6035 - 2.0089 - 0.4123 - 1.6786

All PEAR - 0.8997 - 0.9880 - 0.8451 - 1.2515
Male - 0.8280 - 0.9173 - 1.2155 - 1.4791
Female - 0.1623 - 0.2035 0.1221 - 0.0572
Co-Op - 0.5499 - 0.5625 - 0.1638 - 0.5111

Composite - 2.1027 - 2.4051 - 0.4257 - 1.8329

Note: Z-scores calculated from normal approximation to the distribution of standard deviations,
which is accurate for these large datasets.

computer playing a more passive data-recording role, and the redundant
archival data hardcopy was produced contemporaneously with the generation
of the experimental data, rather than in a deferred printout. In the PortREG ex-
periments, however, the noise source is housed in a small, unobtrusive gray
box that is a far less evident component of the experimental system. Operator
feedback, both digital and graphic, is produced on a computer display, rather
than on the noise unit itself, and data printout is under computer control on a
separate printer facility that operates only at the end of the run. Thus, the sub-
jective experience of an operator generating data differs appreciably between
the two experiments, so that while it is possible that the PortREG devices are
still inherently sensitive to operator intention, their less prominent role in the
experimental configuration may compromise their patterns of response. An-
other operator has suggested that the vast proliferation of interactive, visually
engaging computer displays into public and personal applications over the past
decade may have eroded much of the novelty of this format of human/machine
interaction, rendering the experimental task less challenging and enjoyable. In
either case, the role of feedback, rather than the noise source itself, may be the
more pertinent concern, as further discussed in items 3 and 4 below.

2. Operator pool equivalence: The overall performance of the pool of oper-
ators performing the replication experiments would be similar to that of
the pool of operators that produced the prior PEAR results.

This presumption seemed soundly based on extensive earlier results that
these anomalous effects invariably appeared as broadly distributed, marginal
shifts over the full operator population, rather than being dominated by a few
exceptional operators (Jahn et al., 1997). The fact that PEAR, continuing its
policy of using only uncompensated, anonymous volunteers, many of whom
had participated in the prior experiments, achieved no better replication than
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GARP or FAMMI, who followed more structured handling of operators, con-
tinues to suggest that the composition of the operator pool, per se, is not likely
to be a major factor. Yet, some of the structural evidence from this present
study, as discussed in items 4 and 7, may indicate otherwise.

3. Insensitivity to secondary parameters: The overall results would be in-
sensitive to minor alterations in the secondary experimental
parameters.

The prior PEAR data generated with digital feedback or no feedback were
statistically indistinguishable from the graphic-feedback data, leading to the
assumption that feedback was a matter of indifference or at most of individual
operator aesthetic preference. Both of the ANOVA studies of the prior PEAR
data also failed to uncover any overall feedback sensitivity. Yet, the differ-
ences in replication results related to this parameter indicate that it may have
been a mistake to choose graphic feedback as the introductory default, even
though it seemed to be the most popular choice of the operators. Similar con-
siderations apply to the run-length option. Indeed, the breakdown by sec-
ondary parameter cells in Table C.7 indicates that data generated solely in the
most conducive secondary conditions had effect sizes comparable to those
seen in the prior PEAR experiments. While none of this explains why the rela-
tive insensitivity to these parameters observed previously should have
changed, this presumption also now must be questioned.

4. Insensitivity to operator attitudes: Various psychological or subjective
parameters pertinent to operators’ attitudes in addressing the experi-
mental task, such as their prevailing emotional state, their sense of pur-
pose or enjoyment, the laboratory ambience, the experimenter’s expec-
tations, and other environmental factors, would be adequately preserved
in the aggregate by the operator selection and handling procedures ex-
ercised in the replication.

Prior PEAR experience (Jahn & Dunne, 1988, 1997), supplemented by ex-
tant psychological and parapsychological literature (Rosenthal, 1963; Schlitz,
1986), suggested that certain aspects of the experimental ambience may be
conducive to generation of anomalous effects. Examples include a friendly, re-
laxed, even playful atmosphere; a supportive attitude summarized as “permis-
sion to succeed;” a lack of pressure or urgency for success; an “unfocused” or
“long-wavelength” state of thought and attention; etc. Given the nonreplica-
tion, however, it now appears that either these psychosocial factors are not so
important or we failed to instill a propitious balance of them into our opera-
tors’ experiences.

Possibly supportive of the importance and difficulty of maintaining these
attitudinal factors is some mild evidence for an “epochal” segmentation of the
chronological results from each laboratory. For example, with reference to the
cumulative deviation graphs of Figure 5, we can identify in each laboratory’s
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full record long spans of HI–LO yield (FAMMI: trials 60,000–195,000;
GARP: trials 245,000–345,000; PEAR: trials 195,000–350,000) that were
quite comparable to those of the prior PEAR studies. The reality of such bi-
modal inhomogeneities in these databases, vis-à-vis chance excursions of bi-
nary random walks, cannot be confirmed statistically for this amount of data,
but it is interesting to recall that the larger body of prior PEAR results also dis-
played a bimodal epochal character that took a statistically more convincing
form. Specifically, there we found three virtually equal-length epochs, having
strong performance over the first, chance performance over the second, and
strong performance over the last (cf. Figure 12). While it is difficult to establish
a Bonferroni-type correction factor for this sort of retrospective reexamination
of an extant database, taken at face value the distinction between the three
epochs is quite significant ( 2 = 7.566 on 2 df, p = .0228). The second epoch is
a “nonreplication” of the first quite as stark as the overall PortREG nonreplica-
tion and is of a comparable scale. It was earlier noted that taking the overall
prior PEAR database as a standard, the replication effort refuted the prediction
at a level of Z = - 2.87. Yet, Figure 12 shows us that when PEAR itself, em-
ploying a known, productive experiment with the same protocols and operator
pools, generated an REG database of the scale of PortREG three times in suc-
cession, it failed to show anomalous yield one time in three. In this view, the
joint failure of three laboratories to replicate is an event with p = .037, rather
than the p = .004 one would infer from the above Z-score.

In both the prior PEAR and replication cases, the strong epochal results are
diluted by the remainder of their respective databases. Nevertheless the pres-
ence of extended segments of high yield, and of negligible yield, in both the
prior PEAR and in all three replication databases, raise valid questions con-
cerning what subjective factors bearing on the operators or, for that matter, on
the experimenters, prevailed during these lengthy periods of apparently suc-
cessful replications, and did not in the other, nonproductive major segments.

5. Intention as primary correlate: The specification and control of opera-
tor “intention” is adequate to designate this property as the primary
correlate of the anomalous effects.

While there is no doubt that the stipulation of an operator intention as BL,
HI, or LO, irrevocably specified and recorded prior to initiation of an experi-
mental run, qualifies as an objective index for the subsequent data, it is equal-
ly clear that the processes by which the operator assumes and deploys that in-
tention are inherently subjective in character, and hence potentially vulnerable
to any influences that alter that subjectivity. We need look no further than the
substantial aberrations in baseline behaviors, or the ubiquitous constrictions
of trial-level standard deviations, or the epochal successions just mentioned,
to infer that subtle subconscious as well as conscious mental and emotional
processes may be at work in conditioning the operator’s expression of inten-
tion. How these processes react to the perceived “success” or “failure” of an



ongoing experimental run or of a previously completed series; to the opera-
tor’s sense of “resonance” with the experiment; to the sense of importance of
the achievement; or to the temporal variations in the operator’s mood or state
of health are not really illuminated by these experiments, and remain far from
our grasp. What does emerge, however, is a legitimate question as to whether
intention is the best primary correlate for such anomalies or, as suggested by
the FieldREG experiments (Nelson et al., 1996, 1998), some subtler criterion
for the requisite mind/machine “resonance” would be more fundamental, or at
least complementary to it.

6. Replication criterion: Successful replication validates the phenome-
non; failure to replicate disqualifies it.

The concept of objective replication or falsification is crucial to the exact
sciences. Yet examples abound where varying degrees of compromise with
rigorous replicability have been tolerated out of pragmatic necessity. For ex-
ample, the essential indeterminancy of quantum events forced physicists to ac-
knowledge that for some experimental configurations, no degree of control
over the apparatus will allow the exact prediction of a single observation. In-
stead, exact prediction and measurement are reserved for ensembles and distri-
butions, rather than for individual events, i.e., the definition of “replication”
has been subtly changed to accommodate the intrinsic indeterminancy. Similar
modifications are routinely applied in the study of dynamical chaos and com-
plex systems, e.g., in fluid mechanical turbulence, granular media, fracture
and fatigue processes, etc. Indeed, in any systems sufficiently complex that
the validity of statistical limit theorems must be questioned, the concept of
empirical replication may need to be modified. In our case, the potential inde-
terminancy of various physical outcomes is overlaid with a plethora of poten-
tially relevant biological and psychological variables associated with the
human operators and experimenters that may exceed our ability to specify,
measure, or detect, let alone to control. To expect that these hypercomplex
systems will submit to classical expectations of causality, determinism, and
replicability may be overly presumptive.

Many attempts to address such mind/matter replication problems have been
advanced in the recent literature. One of the authors (J.H.) previously pro-
posed that failures to replicate frequently occur if a sequence of experiments is
interrupted by an overall analysis of the results up to that point. He has termed
this the “Meta-Analysis Demolition Effect” and has discussed its psychologi-
cal and pragmatic implications (Houtkooper, 1994). Others have suggested
that better understanding of the limitations on the dynamical replicability of
unstable physical systems could benefit mind/matter interaction research, as
well (Atmanspacher, 1997; Atmanspacher & Scheingraber, 2000). It has also
been proposed that the lack of dependable reproducibility might be intrinsical-
ly related to the appearance of the anomalies, and thus constitutive of our un-
derstanding of them (Atmanspacher et al., 1999). Yet another approach has
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treated all mind/matter interactions as inherently quantum mechanical in char-
acter, and thus prone to the intrinsic quantum uncertainties (Jahn & Dunne,
1986). Many other rigorous and speculative propositions could be cited, but
the replication problem remains a central conundrum in this class of research.

7. Anomaly indicators: Composite “bottom-line” mean shifts in direc-
tions of intention would be the primary indicators of anomalous effect;
any structural anomalies would simply be embellishment thereon.

While the overall mean-shift criterion is undoubtedly the simplest to speci-
fy, evaluate, and promulgate, it is not a particularly informative source for
comprehension of any subtle psychophysical processes underlying the phe-
nomenon. In prior work, whether “successful” by the overall mean-shift crite-
rion or not, much more has been inferred from the structural details of the
databases, than from their gross characteristics (Dunne, 1998; Dunne et al.,
1994; Jahn, Dobyns, & Dunne, 1991; Jahn et al., 1997; Nelson et al., 2000). In
this PortREG replication program as well, having acknowledged the bemusing
failure to replicate the prior scale of “bottom-line” results, we are presented
with an impressively deep reservoir of structural features that in their striking
internal disparities may testify equally emphatically to a broad variety of oper-
ator influences. Just as those studies in human behavior that encompass many
heterogeneous groups of people rarely yield results that are universally valid
for all participating population subsets, so the broad range of personal charac-
teristics of the operators of these experiments, if relevant at all, could be ex-
pected to express themselves in less-than-consistent, variably incoherent
forms. In this view, the polyglot nature of the results is not so much paradoxi-
cal as it is consistent with, and even supportive of, the hypothesis that some
human behavioral characteristic is indeed interacting with the machines.

Nor should we ignore the magnitude of this constellation of structural
anomalies. Recall that those components encompassed by the Monte Carlo
treatment stood out from chance at about the p = .02 level. But the other struc-
tural features uncovered in the data, which necessarily required alternative
evaluations, contribute further to an overall chance unlikelihood that extends
well beyond that. Specifically, Appendix II outlines conservative meta-analyt-
ical computations that place the composite structural anomalies at a level of
chance expectation in the range of 0.001 to 0.002 (two-tailed). This approach-
es the level of significance that would have been achieved had the overall
mean-shift replication been successful. That is, if the average prior PEAR
H–LO mean shift, , had been sustained over the replication database, the cor-
responding Z-score would have been about 3.60 (p = .0002, one-tailed). In
comparison, the equivalent Z-scores for the structural anomalies in the repli-
cation database range from 3.10 to 3.30, depending on the particular analysis
base employed (cf. Appendix II).

While these reexaminations of presumptions and retrospective arguments
clearly do not resolve our replication paradox, in some respects they may help
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Fig. 12. Prior PEAR cumulative deviations in three epochs.
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to focus suggestions for future research. The change from systematic, inten-
tion-correlated deviations to a comparably anomalous, albeit less orderly pat-
tern of structural distortions testifies to our incomplete understanding of the
basic phenomena, and warns that future empirical and conceptual efforts must
proceed at a more sophisticated level. The next round of experiments and
analyses will need to identify and address the implicit as well as the explicit
assumptions, both in the initial designs and in the assessment of empirical re-
sults, and delve more deeply into the relationship between the anomalous
manifestations and the underlying psychological and physical sources from
which they emerge. No simpler conceptual route seems likely to prevail, but
vigorous and insightful pursuit of this more difficult one not only may ulti-
mately illuminate the particular mind/machine anomalies under study here but
also may provide a much broader view of the relationship of the human mind
to all physical reality.

Appendix I: PortREG Equipment Calibrations

The protocol for the PortREG replication specified that concurrent calibra-
tions be generated at each laboratory to correspond to each experimental ses-
sion, using the same acquisition software but modified to run automatically.
Beyond these, many other ad hoc calibration efforts were undertaken to estab-
lish that the REG devices were performing according to specifications and to
characterize their performance in finer detail. Typically, the concurrent cali-
brations were generated following one or more experimental sessions, in
blocks consisting of 3000 200-bit trials. Most were taken as 1000-trial runs,
but some also were collected in 100-trial runs. Each of the laboratories collect-
ed more than the specified number of concurrent calibration trials from their
respective REG sources. Specifically, GARP and PEAR generated over one
million trials and FAMMI more than 850,000 trials. The results are displayed
in Tables A1.F, A1.G, and A1.P. The first column of the tables lists the parame-
ters computed in the standard suite of statistical tests for calibrations. Included
are the first four moments of the statistical distribution, i.e., the Mean, SD
(standard deviation), Skewness, and Kurtosis. The distribution of trial out-
comes is compared with theoretical expectation by the standard 2 calculations
( 2 Bins), and the standard deviation is calculated for blocks of 100 and 1000
trials (100-tr Sigma and 1000-tr Sigma, respectively). The distribution of runs
of consecutive trials scoring greater than 100, and trials scoring 100 or less is
compared with theoretical expectation ( 2 Runs), and a similar comparison
against theory is made of the proportion of runs of length 50 remaining on one
side of the origin (Arcsine). Finally, two autocorrelation functions are com-
puted, for the raw trial sequences and for blocks of 50 trials (Autocorr Raw
and Autocorr 50). The probability values are computed from the appropriate
statistical indicators (Z-scores, F values, and 2s).

In general, the consistency of the data and the deviations of parameter esti-
mates are in accord with theoretical expectations for independent random bits



having binary probability of precisely .5, and hence these calibrations confirm
the nominal statistical distribution of the overall data. However, a few specific
departures from the theoretical distribution, and their implications for analysis
of the experimental data, should be noted:

1. One of the most consistent structural departures from expectation in the
experimental data occurs in the trial-level standard deviations shown in
Table C.11. Thus, it is particularly important to examine the correspond-
ing behavior of the calibration data. None of the three calibration data-
bases shows a significant deviation from the nominal trial-level standard
deviation of the appropriate theoretical binomial distribution. Specifi-
cally, there is only a slight increase (p = .215) in the FAMMI calibra-
tions, and a slight decrease in the GARP and PEAR calibrations (p = .66
and p = .61, respectively). Therefore, it is valid to pool these values to an
empirical standard of comparison for the experimental data, as de-
scribed in the main text, section III.B.5.

2. The FAMMI calibrations show a marginally significant elevation in the
trial-level goodness-of-f it 2 test (p = .045), even though all four para-
meters of the trial-level distribution are nominal. Of greater concern is
the fact that the standard deviations of both 100-trial and 1000-trial
blocks are significantly elevated (p = .001, p = .012). Since the trial-
level standard deviation is nominal, this indicates a nonindependence
between trials, which produces increased average deviations at the block
lengths used in the actual experiments. Taken at face value, this would
suggest that the mean-shift Z-scores emerging from the FAMMI data are
exaggerated by as much as 5.5%. (This is obtained by comparing the ob-
served standard deviation of 1000-trial blocks, 235.871, to the theoreti-
cal value of 223.607; the ratio, 1.0548, is the factor by which Z-scores
would be inflated by this departure from theoretical standard deviation. )
The presence of intertrial dependence is confirmed by a significant auto-
correlation (p = .005) at the trial level, driven by a succession of large,
positive correlations at various lags, especially lags 5, 6, 10, and 12. A
breakdown of the FAMMI calibrations into four roughly chronological
sections shows that the amplified standard deviation of blocks is primar-
ily in the first half of the data, particularly in the second quarter (series
50 to 99), which show a standard deviation increase as severe as 11.4%
in the worst case. [The FAMMI team observed these deviant early cali-
brations and replaced the original device with a new one. No deeper ex-
amination was made, but the difference between the first and second
half of the FAMMI calibrations suggests the source of the problem was
some subtle malfunction of their REG device.] By any reasonable crite-
rion, these aberrations should have no consequential impact on the pri-
mary or secondary FAMMI data, or the interpretation thereof.

3. The GARP calibrations fail of perfection only in being too good, with a
2 for the deviation of the trial distribution so small that 97.6% of ran-
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dom samples would be expected to show greater departures from the
theoretical populations.

4. The PEAR calibrations show an elevated skewness, 3 = 0.0057, corre-
sponding to Z = 2.48, in the trial distribution. The reasons for this are ob-
scure; a chronological breakdown into 10 segments shows marginally
significant positive skewness in Blocks 4, 6, and 7, with an overall bias
toward positive skewness. The distribution among the blocks suggests
that a small positive skewness is present throughout, with the increased
population of significant outliers being a consequence of normal varia-
tion about this shifted mean. Since trial-level skewness is a departure
from normality, which will be suppressed rapidly in calculations involv-
ing large numbers of independent trials, this is not considered a damag-
ing aberration so long as the trials are independent. All of the PEAR re-
sults relating to intertrial structure are nominal, suggesting that the trials
are indeed mutually independent, despite their distributional oddity.

5. The chronological breakdown of PEAR calibration data suggests the ex-
istence of a brief epoch (May through June 1998) during which trial-
level standard deviation may have been suppressed. (In this segment, s =
7.0302 and p = .9970. This result remains a p = .03 suppression even
after Bonferroni correction for the examination of 10 subsets. Whether
further correction for the many other parameters under scrutiny is ap-
propriate here may be left to the individual analyst.) Since this epoch,
even if it represents a genuine local suppression of standard deviation,
corresponds to a concomitantly small proportion of the experimental
data, and since the overall trial-level standard deviation of the calibra-
tions is nominal, the previous remarks and conclusions concerning the
Z-scores of Table C.11 do not need revision.

As a supplement to the concurrent trial-level calibrations, GARP also col-
lected bit-level calibration data, to examine the behavior of the REG source at
this finer scale. In contrast to the “quality control” approach of the concurrent
calibrations, the GARP procedure is a “device properties” approach (Hout-
kooper, 1998), which examines short-term dependencies as characterized by
Markov-chain transition probabilities. These are in straightforward relation-
ship to traditional parameter-based tests, but this alternative allows more spe-
cific deviations from randomness to be scrutinized and permits calculation of
standard deviations between sections of data and, hence, sensitive detection of
episodic deviations from ideal randomness.

These bit-level data reveal an expected effect, namely a slight excess of the
bit sequences 01 and 10 over 00 and 11. The source of the effect is the design
of the REG, which includes an XOR alternating template to eliminate actual
physical bias in the threshold setting of the comparator that defines voltage
levels as bits. The size of this excess of alternations is on the order of a few
parts in 10,000 and is detectable if data sets are accumulated over a few days.
(The tests require on the order of 100 million bits.) Of course, the standard de-
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TABLE A1.F
FAMMI Concurrent Calibrations (852,000 Trials)

Parameter Theory Actual Probability

Mean 100.0000 99.9991 .453
Std.Dev. 7.0711 7.0753 .215
Skewness 0.0000 - 0.0001 .479
Kurtosis - 0.0100 - 0.0018 .062

2 Bins 62 82.0572 .045
100-tr Sigma 70.7106 72.3696 .001
1000-tr Sigma 223.6068 235.8710 .012

2 Runs 32 21.2935 .925
Arcsine 50 46.8844 .599
Autocorr Raw 25 46.9447 .005
Autocorr 50 25 22.3352 .616

TABLE A1.G
GARP Concurrent Calibrations (1,165,000 Trials)

Parameter Theory Actual Probability

Mean 100.0000 100.0002 .490
Std.Dev. 7.0711 7.0691 .661
Skewness 0.0000 - 0.0010 .333
Kurtosis - 0.0100 - 0.0134 .227

2 Bins 62 41.9505 .976
100-tr Sigma 70.7106 70.9264 .321
1000-tr Sigma 223.6068 229.2080 .113

2 Runs 32 22.4490 .917
Arcsine 50 48.8943 .518
Autocorr Raw 25 36.6390 .062
Autocorr 50 25 14.3219 .956

TABLE A1.P
PEAR Concurrent Calibrations (1,130,000 Trials)

Parameter Theory Actual Probability

Mean 100.0000 99.9998 .488
Std.Dev. 7.0711 7.0697 .613
Skewness 0.0000 0.0057 .007
Kurtosis - 0.0100 - 0.0143 .175

2 Bins 62 64.9570 .408
100-tr Sigma 70.7106 70.8991 .351
1000-tr Sigma 223.6068 219.1441 .829

2 Runs 32 28.0941 .665
Arcsine 50 40.1359 .839
Autocorr Raw 25 20.9494 .695
Autocorr 50 25 19.5021 .772

viation of 200-bit trials is affected by interbit structural behavior on scales up
to 199-bit sequence length and cannot be predicted reliably from this alterna-
tion excess. It is for this reason that the empirical standard deviation estimate
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from the calibrations, including the empirical uncertainty thereof, was used as
the standard of comparison for the statistical measures in Table C.11.

Appendix II: Structural Meta-Analysis

The main text introduces, analyzes, and discusses many different structural
features of the database, some of which prove to be individually significant,
others not. The question to be addressed here is how to compound all such
structural evidence into an overall statistical figure of merit. Specifically, the
general problem of evaluating a number of distinct analyses on a collective
basis is addressed by a meta-analytic technique.

It should be noted at the outset that not all of the participating structural
analyses enter on an equal footing. Some of them are consequences of other
analyses, i.e., they are re-examinations or more detailed investigations of ef-
fects that have already been evaluated in the other formats. Also, certain
analyses were preplanned while others were retrospective. Moreover, while
most of the analyses are based on the entire three-laboratory database, others
are restricted to only single-laboratory data. The following numbered list intro-
duces each of the structural analyses in the order they are encountered in the
main text, describing its status in terms of the foregoing factors and providing
any additional information required to specify how the conclusion of that spe-
cific analysis is reached. A probability value (p) is quoted for each analysis, to
facilitate meta-analytic combination via the method of adding logarithms
(Rosenthal, 1984).

1. The breakdowns by secondary parameters presented in Tables F.2
through F.5, G.2 through G.5, and P.2 through P.5 comprise a preplanned
structural analysis, i.e., examination of these parameters was part of the
original experimental design. While this is a complex calculation with
many subparts, it has been collectively evaluated against the null hy-
pothesis by the Monte Carlo analysis of section III.B.2, resulting in p =
.022.

2. The series-position results, presented in Tables F.6, G.6, and P.6, consti-
tute another preplanned analysis. The 2 summaries in Table C.9 result
in p = .026 after Bonferroni correction for including separate results
from each of the three laboratories. (Only the rightmost column of Table
C.9 is relevant, since the raw 2 would respond to overall mean shifts, if
any. )

3. Table F.7 reports a preplanned exploration of experimenter effects con-
ducted only at FAMMI; combining the independent 2 values results in
p = .887.

4. Table G.7 reports a preplanned examination of control mode conducted
only at GARP; constructing a 2 from the independent Z-scores yields
p = .684.
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5. Table G.8 reports a preplanned examination of operator types conducted
only at GARP; the composite 2 corresponds to p = .241.

6. Following Table G.8, a few summary figures, and the discussion of the
Monte Carlo analysis noted in Item 1 above, the next analysis in the text
is the discussion of “favored cells” in section III.B.2.b. This retrospec-
tive analysis examines internal features of the structural qualities which
have already been evaluated against the null hypothesis in Item 1. Al-
though a p-value of .274 can be computed for this (by applying a Bonfer-
roni correction to the most striking Z-score reported), it cannot properly
be included in the meta-analysis.

7. In contrast, the correlation coefficients reported in the second half of
Table C.7 are a retrospective examination of a different phenomenon.
Such correlations between laboratories are independent of the Monte
Carlo evaluation. After Bonferroni correction this yields p = .243.

8. The retrospective examination of unconfounded secondary parameters
(Table C.8), like Item 6, is a direct consequence of the structural ele-
ments analyzed in Item 1. It produces p = .031 after Bonferroni correc-
tion but cannot properly be included in the meta-analysis.

9. Table P.7, presenting the evaluation of individual operator consistency
between experiments, is an independent retrospective analysis, albeit
one limited to a single laboratory (PEAR). This yields p = .011 after
Bonferroni correction.

10. The summary of PEAR operator-specific performances presented in
Table C.10 also qualifies as a preplanned analysis requested by certain of
the authors. It yields p = .051 after Bonferroni correction.

11. The discussion following Table C.10 mentions, but does not report, a
similar analysis based on a 2 calculation for the series-level, rather than
operator-level, data. This was a retrospective analysis that detects the
same structural properties as the operator-specific analysis and must
therefore be regarded as a derivative of Item 10; its p-value of .021 must
therefore be excluded.

12. The trial-level standard deviation results in Table C.11 follow from a
retrospective analysis that is independent of all previous analyses, with
p = .049 after Bonferroni correction.

13. The counts of successful operators and series, mentioned in the last sub-
section of section III, are consequent to and dependent on the mean
shifts. An earlier version of the Monte Carlo analysis incorporated these
along with the mean-shifts and proved statistically consistent with the re-
sults of Item 1; thus, we may quote p = .022 for this but must consider it a
consequent analysis and exclude it from the meta-analytic combination.

14. The previous 13 items cover all of the analyses presented in sections II
and III, but for completeness, we must note one other independent retro-
spective analysis that was not included in the text. From earlier PEAR
experience, it was speculated that the trial-level variance might be re-
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duced in runs that were successful in the direction of intention, relative
to its value in those runs contrary to intention. The calculated p = .234.

Table A2.1 summarizes these 14 analyses, now organized by category. The
index numbers in the left margin of the table refer to the itemized list above.

To compound the results of a set of analyses individually reported as p-values,
we may take advantage of the fact that under the null hypothesis p is uniform-
ly distributed between 0 and 1, whence - 2 log(p) is distributed as a 2 with 2
degrees of freedom (df). The addition properties of 2 then guarantee that a
sum of n such values is a 2 with 2n df (Rosenthal, 1984).

Considering first only the preplanned analyses that incorporate the entire
database, we have pi = {.022, .026, .051}. This results in 2 = 20.885 on 6 df,
yielding a composite meta-analytic p = .0019. Adding the three retrospective
analyses that cover the entire database increases this 2 to 32.651, now on 12 df
so the meta-analysis reaches p = .0011. Finally, including the four analyses
based on single-laboratory contributions increases 2 to 45.538 and df to 20,
yielding p = .0009. Thus while the various analyses, which might be consid-
ered questionable due to retrospective status or limitation to a single laborato-
ry, increase the statistical significance, they do so only by a factor of 2 from
the initial figure for preplanned, whole-database analyses.

Including retrospective analyses raises the issue of the “file-drawer effect,”
where the visible results might spuriously overestimate an effect by overlook-
ing an unreported background of null results. The standard measure for consid-
ering the possible impact of unreported studies is the number of such studies,

TABLE A2.1
Summary of Analyses

Item Form of analysis p-value

Preplanned; using all data
1. Secondary parameters Monte Carlo .022
2. Series position Independent .026

10. Operator performance Independent .051

Retrospective; using all data
7. Interlab correlation Independent .243

12. Trial-level s Independent .049
14. Success-based s Independent .234

Preplanned; single-laboratory data
3. Experimenter effects Independent; FAMMI only .877
4. Control mode Independent; GARP only .684
5. Operator type Independent; GARP only .241

Retrospective; single-laboratory data
9. Operator consistency Independent; PEAR only .011

Reanalysis of effects already analyzed
6. Favored cells Consequence of (1) (.274)
8. Unconfounded parameters Consequence of (1) (.031)

11. Series 2 Consequence of (10) (.021)
13. Operator and series counts Consequence of (1) (.022)



with null outcomes, that would need to be added to the reported database in
order to reduce the overall result to nonsignificance. For the current result, this
file-drawer number is 14. Given the difficulty of finding any other new and
substantive analyses that are not in some way reexaminations of structural as-
pects already considered, and given that this file-drawer number is equal to the
total number of analyses already reviewed, including several such “dupli-
cates” (6, 8, 11, and 13), it would seem that there is little risk of file-drawer di-
lution of this survey statistic.

In conclusion, the aggregate interpretation for the PortREG analyses with
all multiple-testing and redundancy concerns taken into account is p = .0009
against the null hypothesis that the data contain no anomalous structures, or p
= .0019 if only preplanned complete-data analyses are included (which has the
virtue of rendering file-drawer considerations completely moot).
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