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Abstract—Anomalous effects of human intention on the output of electronic
random event generators (REGs) have been well established at the PEAR
laboratory and elsewhere. A simple model of this effect as a change in the
binary probability of the REG digits would predict that larger statistical yield
can be achieved simply by processing more bits. This hypothesis was explored
previously using protocols ranging from 20 to 2000 bits per trial, with results
that were consistent with the bitwise model, but had too little resolution to rule
out many competing models. More recently, a “‘MegaREG” experiment was
deployed to test this hypothesis using 2-million-bit trials interspersed with 200-
bit trials in a double-blind protocol.

In the initial phase of MegaREG, the 200-bit trials produced outcomes
comparable with our standard experiments, while the 2-million-bit trials
produced an effect somewhat larger in absolute scale, but inverted with regard
to intention. A subsequent replication phase reproduced these findings, except
for statistically nonsignificant quantitative changes. These appear to be
secondary consequences of a statistically significant difference between
operators having, and lacking, prior experience in REG experiments, the
relative proportions of which account for the differences between these
experimental phases. Other operator population distinctions, such as gender,
and various secondary protocol parameters, had no significant effects.

A related experiment called “MegaMega,” differing from MegaREG only in
that all data used 2 million bits per trial, with no interspersal of a second data
type, produced a reversed intentional effect of the same scale. It also displayed
a significant asymmetry between the intentional runs and the non-intentional
baselines, which was not seen in MegaREG.

The combined result of all high-speed experiments was an effect size per trial
of —2.77 = 0.69 times that seen in earlier REG experiments, but given the
larger number of bits per trial, the bitwise probability change was some 30
times smaller. The composite score for the intentional effect in high-density
data across all experiments was T = —4.03 (d.f. > 10°), p = 565X 107 (2-
tailed). The causes of the change of scale, and of the inversion of sign in the
effect, remain unknown. Explanations that can be ruled out with a high degree
of confidence include statistical artifact, the change in the source, the use of
different operator pools, and the double-blind interspersal of data types.
Testable explanations that remain potentially viable include increased task
complexity, inherent timing or rate limits on anomalous functioning, and
changes in the psychological environment.
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Introduction

The Princeton Engineering Anomalies Research (PEAR) laboratory has con-
ducted extensive experimental and theoretical study of anomalous effects of
human consciousness on various types of random event generators (REGs) since
1979 (Jahn et al., 1997). This work builds on previous and ongoing studies by
many other researchers, and is particularly close in design and protocol to that of
Schmidt (1970a,b). An extensive meta-analysis by Radin and Nelson (1989)
found that most of these experimental programs, including PEAR’s, produced
anomalous effects of broadly similar nature and scale.

The anomalous effect seen in these experiments consists of a shift in the mean
output level of REGs that correlated with pre-stated human intention. Thus,
regardless of mechanism or model, any database containing an anomaly displays
a change in the empirical probability of the individual binary events comprising
that database. Most of the PEAR data are consistent with the hypothesis that the
anomalous effect is in fact nothing more nor less than an alteration of the
probability of elementary binary events in the experiment, rather than some more
complicated process which would produce the empirical probability shift as
a consequence (Dobyns, 2000; Jahn ef al., 1991). For reasons of protocol
standardization, however, many physical and psychological variables were held
constant in these experiments, which means that the consistency with the
probability-change hypothesis could be an artifact arising from the uniformity of
some other key parameter throughout the experiments. If the anomalous effect is
truly a shift in the elementary bit-level probability, however, the statistical yield
of an experiment should be increased by increasing the number of bits processed,
while holding all other factors constant.

This prospect was explored in a preliminary fashion using various protocols.
The standard “REG200 protocol collects the sum of 200 random bits into
a single “‘trial,” at a sampling rate of 1000 bits/second. Thus, data collection is
active for 0.2 second, a period of time easily perceptible to the operator. An
intervening pause of approximately 0.7 second leads to a mean data generation
rate of approximately 0.9 second/trial. Two exploratory variants, labeled REG20
and REG2000, collected respectively 1/10 and 10 times as many bits per trial
from the same noise source, with the sampling rate changed correspondingly so
that the periods of trial accumulation were the same. Although the amount of
data accumulated in these protocols was small relative to the primary REG200
experiment, the results seemed compatible with a bitwise effect hypothesis
(Dobyns, 2000; Jahn et al., 1997). These previous explorations are summarized
in Figure 1, showing all three data points well within a 95% confidence interval
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Fig. 1. Original REG investigations of bit rate effects.

(1.96 times as wide as the l¢ error bars drawn) of the sloping dotted line
indicating constant effect per bit.

The original “MegaREG” experiment (Ibison, 1997) attempted a more
thorough test of the bitwise effect hypothesis. The concept was to increase the
standard trial size from a sum of 200 bits to a sum of 2,000,000 bits. If the effect
was a direct alteration of binary probability, then increasing the number of bits per
experiment by 10%, while keeping all other parameters of the experiment constant,
should increase the statistical yield one hundredfold. Several alternative models
of the nature of the anomalous REG effect were considered as well, each of which
predicted a different effect size for this change in bit density.

In order to accomplish this major increase in the number of bits processed
while still presenting the trials to the operator at the same rate as in earlier
experiments, a high-speed noise source unique to this experiment was
developed, as described in detail in Ibison (1998). To ensure that the subjective
participation of operators was changed as little as possible, the user interface for
the data-collection program was unaltered from earlier REG experiments. As
before, trials were collected and presented to the operator at a pace of about one
per second. In any given experimental series, the operator had the option of (a)
seeing the numerical trial value, (b) seeing a graphical cumulative-deviation
trace, or (c) seeing no feedback at all until the end of the run.

To control for possible psychological differences in the operators’ mental state
induced by the awareness of a different experiment and/or by feedback with
numerically large trial values (mean value 1,000,000 instead of 100), MegaREG
was designed to generate both the new, 2-million-bit trials, and 200-bit trials
comparable to those of earlier experiments. These were presented in
indistinguishable formats, as detailed below, in a randomized order, to prevent
any possibility of non-anomalous awareness by the operators of which trial type
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currently was being processed. This was a ““double-blind’’ randomization in that
the experimenters, no less than the operators, remained uninformed about the
source of each trial until the minimum designed database size had been
accumulated. The unblinding of the experimenters by the analysis of the initial
data defined the endpoint of the original experiment.

The same noise source was used for both types of trials. In each, two million
bits were collected and processed. In the ‘‘high-density” trials, all bits were
summed to create the raw trial value, a random integer with a theoretical mean of
1,000,000 and standard deviation 707.1. In the “low-density” trials, only every
ten-thousandth bit of the set of 2 million was used for the sum. (The “low-
density”” nomenclature was chosen because of the fact that the source still ran at its
full sampling rate, but only a few of the samples were actually used as data.
However, the use of every ten-thousandth sample had the effect of temporally
spacing all of the samples actually used as though they had been taken at a 1-kHz
sampling rate, so that the “‘low-density”” mode just as validly could be considered
a “low-speed” mode.) The resulting low-density trial value was a random integer
with theoretical mean 100 and standard deviation 7.071. Low-density and high-
density trials were interspersed, in a pseudorandom pattern, in each “run’ of the
experiment as defined below.

To maintain the indistinguishability of the two trial types, a ‘“‘normalized”
value for the high-density trials was computed. If # was the original trial value,
the normalized value was given by 0.01 X (¢ — 1000000) + 100; that is, the mean
value was subtracted out, the resulting difference divided by 100 to reproduce
the standard deviation of the low-density data, the low-density mean of 100 was
added back, and the result rounded to the nearest integer. Thus, under the null
hypothesis of no effect, the normalized value of a high-density trial should have
had exactly the same distribution as a low-density trial: mean 100, standard
deviation 7.071.

In all other respects, the MegaREG experiment followed the same protocol as
other contemporaneous REG experiments: each “‘series” comprised 1000 trials
in each of the three intentional conditions: high, baseline, and low. Trials were
collected in “runs” of continuous data generation, which, according to the
operator’s preference at the start of the series, could be either 1000 trials, in
which case the whole series would comprise just one run in each intention, or
100 trials, in which case the series would require 30 runs, 10 in each intention.
The pseudorandom lookup table that governed the interspersal of high and low
densities guaranteed exactly 500 trials of each type in a 1000-trial run; it did not,
however, maintain this exact balance in individual 100-trial runs. Hence the
counts of individual high- and low-density trials in this experiment was not
exactly divisible by 500 in each intention.

In the formulae and data tables to follow, the high-density data are presented
and analyzed as the normalized trial values, rather than as raw data values, for two
reasons. First, with both types of trial value reduced to the same range, the same
algorithms and tests can be applied to both. Second, the normalization process has
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no impact on the statistical yield of a given anomalous mean shift, and this
statistical yield is the primary variable of interest (see Appendix). Since the
statistical yield per trial is identical whether one uses the original raw trial values
or their normalized forms, the convenience of using the normalized values
becomes the deciding argument.

Besides the bitwise probability model for the REG anomaly, other models with
different scaling properties were also deployed as possible predictions for the
MegaREG outcome. They are not recounted in detail because they all have been
rendered moot, i.e., the initial experimental result refuted all of the proposed
theories (including the null hypothesis of no effect). As reported in Ibison (1997,
1998), the low-density data produced an effect comparable in magnitude to that of
earlier REG experiments, though not statistically significant due to the relatively
small database. In contrast, the high-density data departed from chance
expectation by more than 3g, but in a direction contrary to the stated intention
of the operators. Such a change of sign cannot be represented as a scaling effect,
regardless of the model.

After the initial unblinding, data collection was left open for any operators
who wished to generate data, and additional data generated in 1996 after the
unblinding were included in the analyses and presentations of Ibison (1997,
1998). In hopes of understanding these curious results, a substantial replication
database was generated in 1998 and 1999. The data from these three phases of
data collection (original experiment as designed, post-unblinding period, and
formal replication period) are the basis of the following discussion.

Analysis Variables

The high-speed data source used for both high- and low-density data is
somewhat less stable than the older REG sources, and its output departs from the
theoretical binomial distribution for trials. Hence, the actual source statistics
must be determined empirically, so parametric statistics must be computed as
Student’s T-scores, based on the empirical standard deviation. Degrees of
freedom (d.f.) are not reported explicitly for most results, since these are in the
range 10* to 10°; in this regime the T-distribution differs negligibly from the
standard normal distribution, and p-values and confidence intervals can be
computed from the latter without appreciable inaccuracy.

As a further safeguard against the lack of a sound theoretical distribution for
the MegaREG source, we depart from PEAR’s traditional presentation and
analysis of the data in terms of the independent outcomes of the three intentions.
Instead, we use two independent measures, which can be constructed from the
three intentional datasets, and are provably immune to most of the artifacts that
might arise from an unknown source distribution. Although there are many ways
to construct two such independent measures from three raw data sources, their
formulae are completely determined by adding two further constraints: each
measure should have expectation 0 under the null hypothesis of no intentional
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effect, and each should have the same standard deviation or standard error as the
measurements from which it is computed.

Let A, [, and b denote one experimental outcome in each of the three intentions
high, low, and baseline, respectively. Let each of these outcomes have
a statistical observation uncertainty o, ; ¢, respectively. Then the two
measures,

D= E’ A h+1-2b
V2 Ve

each have expectation 0, and their variances are

(1)

o, +o; 0, + 0] + 40, 2)
27 6 ’

The symbols for these measures are chosen mnemonically. D is the delta-effect,

the difference between the oppositely directed active intentional conditions. A is

the asymmetry, the difference between the passive baseline and the two active

intentions.

In addition to having well-defined distributions regardless of possible source
irregularities, D and A are mutually independent, or at least uncorrelated. The
proofs of these useful properties are given in the Appendix, along with empirical
data regarding the validity of the mathematical assumptions used, and the
combination formulae for calculating D and A properly (i.e., in a manner immune
to secular drift) in composite databases.

a*(D) a*(A)

Experimental Results

[A series-by-series report of the raw data is available in the Appendices to
Dobyns et al. (2002).]

As mentioned, there is some ambiguity in the exact boundary between the
original and replication databases. Originally, the unblinding date (2 August
1996) was taken as the close of the initial experiment. Prior to unblinding, the
identity of specific trials as high- or low-density had been as unknown to the
experimenters as to the operators, and this was considered an important aspect of
the experimental protocol. Nevertheless, the experiment was left open to
operators who wished to contribute data, and three such volunteers generated six
more series after the unblinding. These were included in the database reported
by Ibison in 1997 and 1998. Therefore, on the basis of prior publication, these
late data are part of the original experiment, whereas on the basis of protocol,
they are part of the replication, conducted after the experimenters had
discovered the peculiar contrast between high-density and low-density data.

Since the amount of data involved is small compared to those databases that are
unambiguously part of the replication or of the original experiment, this issue of
definitions might seem pedantic. Unfortunately, the late-1996 data contain such
large effects that they have a disproportionate influence on any subset in which
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TABLE 1
MegaREG Experimental Phases

Density Delta-effect (D) T(D) Asymmetry T(A)

Original experiment: 59 series

Low 0.0341 = 0.0404 0.8456  —0.0443 = 0.0404 —1.0948

High —0.1200 = 0.0403 —2.9802 —0.0195 * 0.0401 —0.4854
Post-unblinding data: 6 series

Low 0.2265 = 0.1251 1.8100 0.0841 = 0.1269 0.6628

High —0.3048 = 0.1254  —2.4302 0.0733 = 0.1250 0.5861
Replication experiment: 84 series

Low —0.0056 = 0.0329 —0.1713 0.0295 = 0.0329 0.8950

High —0.0679 = 0.0327 —2.0779 0.0375 = 0.0327 1.1464
Combined results: 149 series

Low 0.0189 = 0.0250 0.7546 0.0033 = 0.0250 0.1335

High —0.0971 = 0.0249  —3.9043 0.0170 = 0.0248 0.6865
Difference T-scores: original—replication

T(Low) 0.7638 —1.4141

T.(High) —1.0033 —1.1007

TA(AD) 1.2492 NA
Original —post-unblinding

T(Low) —1.4628 —0.9641

T (High) 1.4033 —0.7063

Tp(AD) —2.0266 NA
Post-unblinding—replication

T.(Low) 1.7941 0.4167

T,(High) —1.8276 0.2769

Tp(AD) 2.5609 NA

they are included. The choice of including them in the replication or in the original
database thus has a substantial impact on the statistical relationship between the
two. Given this fact, and the arguments above for distinguishing the late-1996
data both from the original experiment and from the later replication, the
responsible course is to report the total experiment in three subdivisions: the data
generated prior to the 2 August 1996 unblinding; the post-unblinding data
generated later in 1996; and the formal replication effort of 1998 and 1999.
Table 1 presents the results of the MegaREG experiment in all three phases.
Figure 2 displays the overall D and A values, with associated uncertainties, for the
high- and low-density data in each of the three phases. In Figure 2, D is plotted on
the horizontal axis (labeled ‘‘Differential Effect’’), while A is plotted on the
vertical axis (labeled “Asymmetry”’). Error bars (1) are presented along both
axes. The error bars on the low-density data are marked with arrowheads, while
the error bars on the high-density data are marked with terminal crossbars.
Table 1 includes only 59 series in the original MegaREG database, whereas the
previous publications on this database (Ibison, 1997, 1998) list 70 series. The
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Fig. 2. MegaREG experimental phases.

discrepancy has two sources. One is the separation of the six post-unblinding
series from the original database. In addition, five series run in late 1995 as pilot
tests, before the hardware design was finalized, were included in the earlier
analysis although they properly should not be considered part of the formal
database. The removal of these 11 series does not produce any qualitative change
in the results of the original database.

The difference T-scores in the last section of Table 1 are calculated according
to the formula:

ny — nmy

1, = ©)

2 2’7
\ o]+ 03
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where m; and m, denote two measured values with observation uncertainties o,
and o,. In general we do not have a directed hypothesis for T,, so its sign is
irrelevant but any p-values obtained for it must be two-tailed.

In interpreting Table 1, we first note that the asymmetry parameter .4 seems to
show only chance behavior. None of its direct T-scores are significant, in either
density, nor are there significant differences between experimental phases. In
contrast, for D, each of the three phases has a negative value in the high density
that is independently significant by a two-tailed, p = 0.05 criterion (|T| >
1.96). The low-density data show nonsignificant positive results in the original
experiment and the post-unblinding phase, and a nonsignificant negative result in
the replication.

The difference T-scores in the lower part of Table 1 show no p < 0.05 difference
for either data density between any two experiment phases. However, this section
adds another parameter. The difference between low-density A and high-density
A, in any given phase, produces an observable quantity which we may call AD,
expressing the change in performance between the two densities. The AD rows in
the last section then give the difference scores T,; for AD between the indicated
experimental phases. Note that the quantity on lines labeled T ,(AD) is thus a third-
order difference on the raw data: D is intrinsically a difference comparing high and
low intentions; AD is the difference between D in the high and low data densities;
and T4 AD) is a difference between AD in two phases of the experiment.

While T,(AD) between the original and replication data is well within the
range of normal chance variation, the post-unblinding phase does differ
significantly from both of the other phases, at p = 0.043 for the original and p =
0.010 for the replication (both p-values 2-tailed). Thus, while neither the high-
density nor the low-density conditions differ individually between any two of the
three experimental phases, the post-unblinding phase becomes statistically
distinguishable from both the original and the replication phases when the split
between low- and high-density data is examined. This is due to the combination
of increased D in low-density and decreased D in high-density, though neither
change is significant by itself. The original and replication phases, on the other
hand, remain statistically indistinguishable, even in the AD parameter.

Since the original and replication data are statistically indistinguishable on
every measure, it is safe to pool them for the subsidiary analyses to be conducted
later. The status of the post-unblinding subset is more problematic. It is
distinguishable from the rest of the data on one parameter, AD, but only on that
parameter. It is a very small database, and 5 of its 6 series were generated by
operators who did not participate in either of the other phases of the experiment.
Although one might argue that the disparate post-unblinding subset should be
discarded as an outlier, it seems safer to include it in the experimental data, at least
provisionally. The fact that it is dominated by operators not appearing elsewhere
in the experiment suggests that its peculiarities may be driven by idiosyncratic
properties of those operators. If so, exclusion of these data would lead to
inaccurate interpretations of the range of operator performances.
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As the “Combined Results’ in Table 1 illustrate, when all data are pooled, the
counter-intentional result in the high-density D achieves a T-score of —3.9043
(p = 9.4 X 107, 2-tailed).

Subsidiary Analyses

Aside from the ““bottom line” results presented in Table 1 and Figure 2, we may
hope for some illumination into the nature of the phenomenon to emerge from
more detailed analysis. As with most PEAR experiments, a number of secondary
parameters were examined along with the primary intentional variable. In
addition, prior experimental experience strongly suggests that different operators
may produce different results, whether as idiosyncratic individuals or as members
of subgroups with shared properties (Dunne, 1991, 1998; Jahn et al., 1991, 1997;
Nelson et al., 2000). In pursuing the following analyses, we use data pooled across
all experimental phases.

Individual Operators

[Full data on individual operator performances can be found in the
Appendices of Dobyns et al. (2002).]

Figure 3 presents a scatter plot showing all of the individual operator
performances. Low-density data are presented with open circles, high-density
with filled circles; to improve visibility, the error bars have been omitted. Note
that the scale of Figure 3 has been expanded, compared to Figure 2, to
accommodate the wide dispersion of individual results. (The appearance of only
23 low-density datasets is due to an overlap: the open circle for one operator’s
low-density data [D = —0.0042, A = 0.0678] is invisible behind another
operator’s high-density data [D = —0.0032, A = 0.0676].)

In the low-density data, the individual operator performances show a slight,
nonsignificant bias toward positive D, with 14 of 24 having D > 0. In the high-
density data, 20 of the 24 operators show D < 0; this population imbalance itself
is improbable with p = 0.003, 2-tailed. (A further Bonferroni correction for the
fact that such an imbalance might have appeared in either density condition yields
p = 0.006, still highly significant.) The fact that most operators have negative D
suggests that the reversal of intentional effect in the MegaREG database is
a broadly distributed phenomenon among the operator population, rather than
being driven by a few exceptional operators.

The wide scatter of the individual operator databases in Figure 3, relative to
the overall summaries of Figure 2, is due in part to the smaller size, and hence
reduced statistical resolution, of the individual databases. It is important to know,
however, whether the actual amount of scatter is statistically distinguishable from
that expected for normal random variation given the database sizes. The amount
of variation among operators can be calculated by computing a y* value for the
departure of the various operators from the collective mean. If there are N
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Fig. 3. Individual operator performances in MegaREG.

operators, and the ith operator’s database has mean m; with standard error ¢;, and if
the composite mean for all operators is m, then

=257 @

is distributed as a y* with N — 1 d.f., under the null hypothesis that all operators
have an identical effect on the data and the differences between operators are
due to random variation.

Table 2 gives the inter-operator y> values as computed from Eq. 4. The
p-values given are upper-tail, describing the null-hypothesis likelihood of a larger
»>. Since we would, however, find suppressed variation equally as interesting as
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TABLE 2
Inter-Operator Variability

Density df. (D) P 7 (A) P
Low 23 16.897 0.814 14.504 0912
High 23 27.885 0.220 26.717 0.268

excess variation, for a 5% criterion we should look for either p < .025 or p > .975.
It is evident that none such appear. Thus, any idiosyncratic individual variation
among operators is too small for detection within the available statistical
resolution.

Operator Populations

Rather than varying individually and idiosyncratically, operator perfor-
mances may be divisible into two (or more) distinct populations. Because of the
larger databases, a difference between two populations may be more readily
detectable when the data from operators in each population are pooled, even
though the individual-operator y* measures do not show detectable increases in
the overall dispersion of operator performances. One operator-distinguishing
parameter that has proven to be important in many other experiments is operator
gender (Dunne, 1998). Examining gender forces us to examine operator plurality
as well. Some “‘operators” are actually pairs of operators working together
(Dunne, 1991). This co-operator subgroup is treated here as a third “‘gender,”
since all pairs consisted of one male and one female operator.

Figure 4 illustrates the results of dividing the MegaREG data into the three
gender-based sub-populations: females, males, and co-operators. There are
evident differences among the three populations, although the error bars make it
clear that these may not be significant. Most striking is the fact that the inverted
intentional effect in the high-density condition is almost twice as large for males
as for females, and twice as large again for the co-operators. (This last result,
though not statistically robust due to the large uncertainties, is consistent with
earlier findings regarding co-operator pairs [Dunne, 1991].)

Another division that may have greater explanatory power was intended to
test the possibility that the differences between MegaREG and earlier REG
experiments were due to the differences in the operator pool. Specifically, the
MegaREG operator population was subdivided into those operators with
previous REG experience, and those operators whose first experience of REG-
class experiments was MegaREG. Figure 5 displays D and A for these two
populations of ““previously experienced” and ““new’’ operators, with the original
REG200 results shown as a comparison benchmark. We may note in passing that
the negative result in high-density data cannot be explained entirely by the
change in operator pool, since both sets of high-density data remain individually
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Fig. 4. Data from operator gender/number subgroups.

incompatible with the REG200 data. Of considerably greater interest, though, is
the tremendous difference in performance between the experienced operators
and the new operators.

It is evident in both Figures 4 and 5 that, just as in the whole-experiment
summaries, A is showing no detectable deviation from chance behavior. The
statistical status of D in these figures is not so obvious from inspection, so Table
3 presents the D values for Figures 4 and 5 numerically. In addition to the value
of D in low- and high-density, the AD parameter for the split between densities
is reported. Table 3 also gives a x> value for the differences among the three
operator populations segregated by gender and number, and a T, value for the
two populations segregated by experience. The x> values, which have 2 d.f.,
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TABLE 3
Operator Sub-Populations
Operator type Nops  Nyer Low-density D High-density D AD
Females 7 61 —0.0062 + 0.0391 —0.0604 + 0.0388  0.0541 + 0.0550
Males 12 81 0.0313 + 0.0340 —0.1128 = 0.0339  0.1441 * 0.0480
Co-op pairs 5 7 0.0901 = 0.1116  —0.2315 = 0.1116  0.3216 * 0.1578
Difference y* (p) 0.9542 (0.621) 2.5626 (0.278) 3034 (0.192)
Experienced 11 110 —0.0109 = 0.0290 —0.0664 * 0.0289  0.0555 * 0.0409
New 13 39 0.1044 = 0.0492 —0.1850 = 0.0489  0.2894 = 0.0693

T4 (p), Exp — New

—2.0182 (0.043)

2.0987 (0.036)

—2.9045 (0.0037)
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TABLE 4
Individuals within Populations

Operator type Nops N, |N_, low-density N, | N_, high-density
All 24 14|10 4120
Female 7 4|3 116

Male 12 8|4 2]10

Co-op 5 213 14
Experienced 11 5|6 219

New 13 9|4 2|11

indicate that despite the apparent scale of the differences between operator
genders, their statistical significance cannot be confirmed. (Neither do any of the
individual T, values between pairs of operator types attain a p < 0.05
discrimination.) In contrast, the difference between experienced and new
operators is independently significant in each data density at a two-tailed
p < 0.05 level, and achieves p = 0.0037 (2-tailed) in the AD condition. Despite
the impressive difference between the two populations, Table 3 also confirms
that the negative value of high-density D is a statistically robust feature of both;
while the new operators have almost triple the negative effect of the experienced
operators (D = —0.1850 vs. D = —0.0664), the latter’s performance is still
independently significant with T = (—0.0664/0.0289) = —2.2975 (p = .022).

The results of Table 3 suggest that the apparent differences among
experimental phases seen in Table 1 and Figure 2 are, in all likelihood, driven
mostly by the operator-experience variable. In the original experiment, the 59
series were almost evenly contributed by both operator types: 31 series were
generated by experienced operators, 28 by new operators. In the post-unblinding
period, with its much larger effects, 5 of the 6 series were generated by new
operators. In the replication phase, with its smaller effects and much smaller AD,
78 of the 84 series were generated by experienced operators, and only six by new
operators.

In the discussion of Figure 3, we noted that individual operator
performances showed a statistically significant preference for D < 0 in high-
density data. Table 4 examines this individual-operator measure within the sub-
populations of Table 3. The columns labeled N, |N_ give the number of operators
with positive and negative D, respectively, in the high- and low-density data.
The most salient feature of this dissection is the consistent tendency for
individuals to have negative D across all categories of gender and experience in
the high-density data.

Secondary Parameters

A variety of protocol parameters could be adjusted to suit the operator’s
preferences and comfort, and these were examined as secondary independent
variables, in hope that their impact or lack thereof on the experimental results
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might convey some insight into the nature of the anomaly. Four sets of
secondary parameter variations were used in MegaREG. The assignment of
intention to individual runs could be volitional (operator chooses whether the
next run will be high, low, or baseline, within the constraints of an overall
balanced design), or instructed (choice was made automatically by the program,
using a pseudorandom procedure). The control of trial generation within runs
could be automatic (trials were generated sequentially by the program until the
run is complete) or manual (after each trial, the program waited for an operator
keypress before generating the next). The feedback to the operator could be
graphic (cumulative deviation trace drawn on the screen), digital (screen
presented current trial value and running mean numerically), or nonexistent
(screen presented only the number of trials generated, with no information
concerning results). Finally, the runs themselves could be short (100 trials, so
a series consisted of 10 runs in each intention), or long (1000 trials, so a series
consisted of 1 run in each intention). The results for these data subdivisions are
presented in Table 5. Once again only D is presented; although neither variable
shows statistically robust distinctions in any parameter, there are some
suggestive trends approaching significance in D, while A shows no noteworthy
activity.

For D as presented in the table, there apparently is also no discernible
sensitivity to the assignment mode. Volitional and instructed data are
statistically indistinguishable in every aspect. In contrast, the negative high-
density D value is strikingly enhanced in the manual-control data, with an
apparent effect size almost three times as large as the automatic-control data.
This difference is not statistically significant, however, due to the small size of
the manual database.

The third section of Table 5 suggests that the reversed intentional effect,
and the difference between the two data densities, vanishes almost entirely in the
digital-feedback data; is considerably stronger in the graphic-feedback mode
that comprises the bulk of the database; and is strongest of all when feedback is
entirely removed. However, the complete non-significance of the y* measures
for inter-dataset variability make it doubtful that these apparent variations
comprise a genuine pattern.

The final part of Table 5 indicates that short runs show larger positive
effects in low density, and larger negative effects in high density. Although these
differences are slightly short of statistical significance, they are suggestive in
that several earlier REG experiments have observed the same pattern of non-
significant enhancement effects in shorter runs (Jahn et al., 2000; Nelson et al.,
2000). (A meta-analytic Stouffer Z-score combining the current result with those
presented in the two foregoing references achieves a significant value of 2.094.)

In summary, despite some suggestive variations, none of the secondary
parameters show clearly resolved, statistically unambiguous effects on the data.
Thus, the main indications of the subsidiary analyses are:
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TABLE 5

Secondary Parameter Comparisons

385

Parameter Nyer Low-density D High-density D AD
Instructed 73 —0.0006 *= 0.0359 —0.0870 = 0.0357 0.0864 = 0.0506
Volitional 76 0.0372 = 0.0348 —0.1067 = 0.0347 0.1440 = 0.0492
T, and p(T) —0.7569 (0.449) 0.3971 (0.691) —0.8166 (0.414)
Automatic 138 0.0200 %= 0.0259 —0.0861 = 0.0258 0.1060 = 0.0366
Manual 11 0.0044 = 0.0938 —0.2467 = 0.0948 0.2511 = 0.1334
T, and p(T) 0.1594 (0.873) 1.6347 (0.102) —1.0492 (0.294)
Graphic 110 0.0220 = 0.0289 —0.1044 = 0.0287 0.1264 = 0.0408
Digital 27 —0.0199 * 0.0595 —0.0457 = 0.0593 0.0258 * 0.0841
No-feedback 12 0.0771 %= 0.0903 —0.1443 = 0.0905 0.2214 = 0.1278
P> 0.8516 (0.653) 1.0876 (0.581) 1.8969 (0.387)
Short runs 56 0.0384 = 0.0413 —0.1549 = 0.0412 0.1933 = 0.0583
Long runs 93 0.0076 = 0.0314 —0.0639 = 0.0312 0.0715 = 0.0443
T, and p(T) 0.5925 (0.554) —1.7626 (0.078) 1.6634 (0.096)

e The negative effect in high-density data is broadly distributed in the
operator population, and cannot be attributed to a subset of peculiar or
idiosyncratic operators.

o Neither is this effect attributable to the change in operator pool from earlier
REG experiments, since it is present and statistically significant both in
operators with previous REG experience, and in operators whose
participation in MegaREG was their first exposure to this class of
experiments.

e The effect is, however, much larger in the data contributed by new
operators, to a statistically significant degree.

e While there are tentative indications that some secondary parameters may
affect the experimental performance, any such effects are below the
threshold for confident statistical detection in these data.

Parallel Results: The “MegaMega” Experiment

A separate experiment exploring high data rates was undertaken concurrently
with the replication phase of MegaREG. This experiment was identical to
MegaREG in all regards except one: all data were normalized high-density data.
No low-density data were collected, so there was no double-blind interspersal of
two data types. This experiment, dubbed ““MegaMega,” thus directly addressed
the impact of this double-blinding on the MegaREG result. The results for this
experiment are summarized in Table 6 and Figure 6.

Figure 6 displays the MegaMega results, along with the MegaREG overall
results in both densities and those of the original REG200 experiment, which
corresponds to MegaREG low density. Table 6 reports the overall results of
MegaMega, and the breakdowns by various subsets. Since the database is
considerably smaller than the MegaREG database, comprising only 39 series,
statistical uncertainties are appreciably larger. An immediately striking result is
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TABLE 6
MegaMega Results

Data subset Nop  Neer D T(D) A T(A)
All data 11 39  —0.0510 £ 0.0345 —1.4779 0.0753 £ 0.0345 2.1809
Operator categories

Experienced 7 29  —0.0287 = 0.0401 —0.7161 0.0730 = 0.0402  1.8185
New 4 10 —0.1146 £ 0.0678 —1.6910 0.0819 * 0.0677  1.2092
Female 5 22 —0.0381 = 0.0466 —0.8190 0.1300 = 0.0465 2.7946
Male 6 17 —0.0669 £ 0.0515 —1.2979 0.0082 % 0.0515 0.1592

the emergence of a significant overall asymmetry parameter A in the total
database. Since A does not come close to statistical significance in any phase of
MegaREG (Table 1), this must be classified as a departure from MegaREG
behavior. The breakdown by operator types indicates that this asymmetry is
driven entirely by female operators, and does not seem to be affected by
previous experience.

Since the only difference between MegaMega and MegaREG is the double-
blind interspersal of low-density data in the latter, this asymmetry would seem to
be attributable to the simpler technical design of the former. It is also suggestive
that the asymmetry appears to be driven by female operators, insofar as
a tendency for asymmetric performance by females has been noted in other
experiments (Dunne, 1998). If indeed this sort of asymmetry is a characteristic
female pattern, one might speculate that the double-blind, interspersed data
generation of MegaREG may have caused it to be suppressed.

In D, the net effect for MegaMega (—0.0510 = 0.0345) is quite close to that
seen in the high-density data of the concurrent MegaREG replication database
(—0.0679 = 0.0327), and is not statistically distinguishable from the high-density
D for MegaREG as a whole (—0.0971 = 0.0249; difference T, = 0.6863).
Moreover, as Table 6 shows, the pattern of negative D by operator category is the
same in MegaMega as in high-density MegaREG; i.e., the effect is somewhat
stronger for male operators than females, and is overwhelmingly driven by new
operators as distinct from previously experienced operators.

In terms of D, then, MegaMega appears to be a successful replication, in the
sense that it shows the same effects and the same internal pattern of effects as the
high-density data from MegaREG. The implications of this similarity will be
addressed further in the Discussion. If we consider the indistinguishability of
the results to justify pooling of the data, MegaMega brings the combined
high-density database to an effect of D = —0.0813 = 0.0202, T = —4.0272,
p = 5.65% 107, 2-tailed.

Relation to REG200
Figure 6 also displays the REG200 result for comparison with the
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Fig. 6. MegaREG, MegaMega, and REG200.

MegaREG and MegaMega results, in the same D, A analysis variables. Like
most MegaREG datasets, REG200 has an overall A indistinguishable from
0 (A = —-0.0067 = 0.0078). Its intentional effect is D = 0.0294 = 0.0077. This
is statistically indistinguishable from the low-density D, as is evident from the
figure; using the value 0.0189 = 0.0250 from Table 1, we obtain 7; = 0.402.
The relatively large uncertainty in the low-density MegaREG result means,
however, that while indistinguishable from REG200 it is also indistinguishable
from zero; although in some sense the ‘“‘least hypothesis™ is that it should show
the same effect size as the preceding experiment, this is not strongly favored
over the hypothesis that it shows no effect at all.

The anti-intentional effect in high-density data is both highly significant
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and clearly distinct from the intentional effect in REG200. The cause of the sign
reversal remains a mystery, but the scale of the effect is clearly larger. The
absolute value of the pooled MegaREG and MegaMega effect is |D| = 0.0813 =
0.0202, some 2.77 = 0.69 times as large as the REG200 effect, with T, = 2.401
(p = 0.016, 2-tailed) for the difference in absolute magnitudes. The change in
the bitwise effect can be extracted from the D effect by recalling that the ten-
thousandfold increase in bits per trial mandates a hundredfold increase in
statistical yield per trial, if Ap is held constant. Therefore the effect per bit in
high-density data is (2.77/100) = 0.0277 times the REG200 bitwise effect size,
with T, =3.711 (p =2 X 107%, 2-tailed) for the difference between the two. The
salient features of raising the bit count per trial from two hundred to two million
thus seem to be (a) an inversion of the sign of the effect, (b) an approximately
threefold increase in statistical yield per trial, and (c) an approximately thirtyfold
decrease in statistical yield per bit, with all three relations being statistically
well-established.

Discussion

Before the outcome of the original MegaREG experiment was known, the
anticipatory theoretical efforts deployed for its interpretation involved various
models for the expected scaling of the effect between low-density data, which
corresponded to the vast majority of pre-existing PEAR REG data, and the high-
density data with 10* times as many bits per trial. The simple model (Dobyns,
2000; Jahn et al., 1997), which presumes that REG anomalies are due to a change
in the probability of elementary binary events, predicts that the high-density data
should have 100 times the statistical leverage of the low-density data. Various
other models also were considered a priori, as detailed in Ibison (1997, 1998).

Unfortunately, the reversal of effect (D < 0) in the high-density data refutes
all of the proposed models, since none can accommodate a change of sign. On
the other hand, the effect seen in the high-density data is sufficiently robust
(p = 5.65 X 107°) to render the null hypothesis untenable. All proposed models,
including the null hypothesis, having been refuted, what then are the options for
interpreting these data?

Some consideration not included in previous models must account for the
reversal in sign. Ibison (1997, 1998) focuses theoretical interpretation on the
“source-independence” theory promulgated by Schmidt, among others
(Schmidt, 1974). It may indeed be the case that the difference between
MegaREG and previous REG experiments resides in their noise sources. It is
premature, however, to call this the only explanation available, or conclude that
this experiment has addressed definitively the question of source independence.
From ‘“Combined Results” in Table 1 we see that the high-density data are not
only statistically distinct from the chance expectation of 0, but also quite distinct
from the low-density data generated on the same source: the difference is
T, = 3.29 (p = 0.001, 2-tailed). (Including the MegaMega data changes the
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value slightly but not the conclusion: T, = 3.12, p = 0.002.) If the D < 0 effect
in the high-density data is due to the different noise source, we must come to
terms somehow with the fact that the same noise-generation hardware, using
a different mode for postprocessing the raw data, has become “‘different” in
terms of its anomalous performance. Another way to express the problem is that
we find a theoretically unbiased sample of 1 bit in every 10,000 to be showing
statistics completely incompatible with those of the parent noise stream from
which the sample is drawn.

This difficulty with source-dependence can be avoided only by adopting
a rather abstract notion of “‘source.” If one insists that the whole causal chain
connecting the raw physical noise to the final recorded data must be regarded as
the source, then the different postprocessing regimes qualify the high- and low-
density modes of the MegaREG source as distinct “sources’” in this extended
sense of the term. While logically legitimate, this usage of “‘source’ is somewhat
counterintuitive. For example, one would normally consider the MegaREG
“source” to be the separately powered, physically isolated unit which
transmitted the raw bit-level signal to the experimental computer, but in
contrast this alternative view includes as part of the “source” those operations,
carried out entirely in software by the main computer, which distinguish a high-
density trial from a low-density trial.

Setting aside source dependence, the following subsections outline some of
the other explanations that have been considered seriously for the reversal of
intentional effects in the high-density data.

Statistical Fluke

There was some initial concern that the odd result in the first MegaREG
database somehow might be an artifact of inadequate data collection, despite the
database having achieved its designed size. Moreover, the fact that the result was
contrary to intention, while the initial models had presumed an intentional effect
and had deployed one-tailed tests for its detection, made any statistical
interpretation of the results problematic according to some schools of statistical
inference. Both of these concerns have been addressed by the collection of
a larger body of replication data that shows substantively the same pattern of
performance.

Change in Operator Pool

As noted in the discussion of operator sub-populations, a considerable
proportion of the MegaREG operator pool had no previous REG experience.
Specifically, of the 24 operators who participated in the MegaREG experiments,
only 11 had already participated in REG-type experiments. Thus, the difference
between MegaREG and earlier REG performances might be due to the different
population of contributing operators. Indeed, the results shown in Figure 5 and
Table 3 show that the new and the previously experienced operators are indeed
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very different populations. The difference between the high-density and low-
density data is over five times as large for the operators with no previous REG
experience. Interestingly, these new operators attain an independently significant
D in the direction of intention in the low-density data pooled across the entire
experiment (7T = 2.1220, p = 0.017, 1-tailed). (Measuring success in direction of
intention is properly a one-tailed test.) It is, of course, impossible to determine
from the current database whether this difference between the experienced and
new operators arises simply because the new operators are a different set of
people, whose idiosyncratic patterns of performance are by happenstance
unusual relative to PEAR’s earlier operator pool, or if it is the result of
a systematic personal or psychological effect of having had previous REG
experience.

Regardless of the difference between new and previously experienced
operators, the operator-pool hypothesis is refuted by the fact that the experienced
operators’ high-density performance is independently significant (T = —2.2975,
p = 0.022, 2-tailed) and significantly different from the REG benchmark effect
(T;, = —3.2027, p = 0.001). Thus, operators who had participated in earlier
REG experiments produced a MegaREG result consistently different from their
earlier history. This may be due to some innate difference between the
MegaREG experiment and other REG experiments, or it may be that an
operator’s performance in one experiment cannot be used reliably to predict
performance in another. (Further evidence in support of this view is adduced in
Jahn et al., 2000, Table P.7, p. 538.)

Change in Task

MegaREG introduced a completely novel element to PEAR experiments by
interspersing two distinct types of data in a fashion to which both operators and
experimenters were blind. It was pointed out by several experimenters that this
fundamentally changed the nature of the experiment, in that we were attempting
to address two questions simultaneously: first, was there an anomalous effect;
and second, did it differ between the two data types? Some teleological or
observation-based models of anomalous phenomena would suggest that such
a change in the basic analysis mode of an experiment might, in itself, induce
a change in its outcome. As a subsidiary aspect of this issue, one also must note
that in any experiment involving consciousness-related anomalies, it may not be
possible to blind operators to an experimental condition by the mere absence of
conventional sensory access to that condition.

Subject to the caveats of its smaller size and limited resolution, MegaMega
shows that the double-blind interspersal is not the cause of the unexpected
MegaREG outcome. With respect to intention, the result of MegaMega is
indistinguishable from that of the high-density MegaREG data to which it
corresponds, despite the absence of any double-blind interspersal in the
MegaMega protocol. Whether or not MegaREG blinding was “‘successful’ at
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the level of the operators’ unconscious where the potential for anomalies
presumably resides (Jahn & Dunne, 2001), it does not seem to have had any effect
on the experimental output, save perhaps in suppressing the non-intentional
asymmetry that has appeared for female operators in other experiments.

A related question is the role of the experimenter blinding, which of course
distinguishes the initial phase from the post-unblinding phase within MegaREG.
The consistency between original and replication data indicates that unblinding
the experimenters to the outcome did not have any major impact on the results.

Another consideration that falls under the category of “‘change in task” is
the additional processing involved in both the low-density and the high-density
trials. Of the two, the low-density trials are closer in concept and structure to the
existing REG design: the discarding of most intervening bits is functionally
equivalent to the temporally slower sampling used in the original REG
experiment. In the high-density trials, on the other hand, a full two million bits
were processed for each trial, but their collective outcome was then normalized
for presentation in the same format as the low-density trials. Whether the
difference between high-density and low-density outcomes arose from this
difference in processing paths, rather than from the blinding and interspersal per
se, is another ‘“‘change in task™ hypothesis that cannot be tested retrospectively.
MegaMega does not resolve this issue, since it employed the same processing
path as high-density MegaREG.

Processing Overload

Given the fact that the high-density data uniformly showed deviations
contrary to the operator’s intention, it is tempting to identify them as an actual
dysfunction of whatever process is involved in creating intentional anomalies.
The fact that this “dysfunction” is associated with an extremely high data rate
adds to the temptation, since inadequate speed of processing sensory input has
been implicated as a component in disorders ranging from schizophrenia to
dyslexia. In other words, the high-density data might be contrary to intention
simply because the operator’s faculty for producing anomalous effects, whatever
its nature, is overloaded by the tremendously high data rate, and rather than
simply failing to function, operates erroneously.

In considering this speculation, we once again should bear in mind that the
low-density MegaREG data are indistinguishable in their timing from the
sampling pattern of the original REG. While the source continued to generate
bits at the rate of 10 MHz, the low-density filtering operation accepted only
every ten-thousandth bit. The remaining bits simply were discarded, neither
presented to the operator nor recorded anywhere. From the operator’s point of
view, these discarded bits effectively did not exist. An operator presented with
a low-density trial was seeing the sum of 200 bits gathered at a rate of (10 MHz/
10* = 1 kHz), exactly as in the earlier REG200 experiment. The contrast
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between low- and high-density is thus exactly what one would expect if the
intentional inversion is due to some form of processing overload.

A problem with this hypothesis is that the kilohertz sampling rate of the
original REG and of the low-density MegaREG data already is considerably
faster than most biological and neurological processes. Moreover, the REG2000
data show that reliable anomalous response is possible at bit rates of up to 10
kHz. It is not at all clear what physical or psychological capacities a human
being might have that can operate at 10 kHz but break down dysfunctionally at
10 MHz. On the other hand, despite its a priori implausibility, the processing
overload explanation at least has the virtue of being relatively easy to test. A
series of experiments deployed at intermediate data rates could localize and
verify a breakdown of intentional effort at a specific rate, if indeed this is the
cause of the MegaREG high-density inversion.

Change in Environment

It is reasonable to expect that psychological factors would be relevant to the
production of consciousness-related anomalies. Such factors include mode,
attitude, prior beliefs, and environmental ambience (Braud et al., 1995; Heath,
2000; Honorton & Barksdale, 1972; Polyani, 1983; White, 1976). Moreover, in
this field, the possibility of experimenter effects must be considered seriously; the
experimenter’s own mood, attitude, and approach are part of the environment in
which the operator generates data. While PEAR has striven to maintain
a conducive and supportive atmosphere for the generation of anomalous results
by operators, the history of the full range of REG experimentation suggests that
control over this important parameter has been less than perfect (Jahn et al., 2000).
Psychological environment is, of course, a highly subjective parameter that is
difficult even to specify systematically, much less to measure or control. Indeed,
some aspects of the psychological environment may be inherently beyond
experimental control. For example, an operator confronted with an REG
experiment (or any experience) for the tenth or perhaps the hundredth time surely
will not see it as fresh or novel, no matter what environment the experimenters
seek to arrange. This should be taken into account when considering the stark
contrast between new and previously experienced operators discussed above.

Nevertheless, some aspects of the MegaREG results are not plausibly
attributable to environmental influences. The tremendous split between the high-
and low-density performances appears between two classes of data generated by
the same operator, at the same time, under the same environmental conditions.
Since the conscious psychological situation does not differ between the two
conditions, it can hardly be responsible for the difference in outcomes.

Conclusions

The results of three phases of MegaREG, and the companion MegaMega
experiment, may be summarized as follows:
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1. The experiments displayed a real and replicable anomalous effect in which
the high-density data had an outcome contrary to intention.

2. This reversal with respect to intention refutes all straightforward scaling
models.

3. The absolute value of the MegaREG effect is approximately three times
(2.77 %= 0.69) larger on a per-trial basis, and so approximately 30 times
smaller on a per-bit basis, than the REG200 effect.

4. A strong difference is found between performances of operators with and
without previous REG experience. Both the primary intentional effect in
each data density, and the difference between data densities, are much
larger for the inexperienced operators.

5. The change in operator pool cannot be the source of the effect reversal,
however, since both operator populations show it at a statistically
significant level.

6. The difference between the MegaREG source and earlier REG sources is
an implausible explanation for the difference between MegaREG and
earlier REG experiments, because the high-density and low-density data
generated on the same source also differ, and the low-density data are
consistent with earlier REG experiments.

7. The double-blind interspersal of two data types is not the cause of the
effect reversal.

8. Operator sensitivity to experimental task definition may be a possible
explanation. This may be due to the increased processing load inherent in
the higher data rate, or due to some aspect of the normalization process in
high-density data.

9. The psychological environment, and/or experimenter expectations, may
also be a factor in the overall production of a counter-intentional effect,
but probably is not capable of explaining the split between data-density
conditions.

Unfortunately, MegaREG is now a closed experiment. The noise source used has
since suffered electronics failure, and the labor-intensive nature of repairing and
maintaining the experiment renders impractical any effort to rehabilitate it at this
time. Nevertheless, the replication phase has verified, at least, that the reversal
phenomenon seen in the first phase was genuine, and that it is not sensitive to the
experimenters’ state of knowledge concerning the outcome. Further interpreta-
tion of this result remains elusive.
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Appendix: Mathematical Demonstrations
Yield Unaffected by Normalization

A raw MegaREG trial value is (under the null hypothesis) a normally
distributed random variable ¢ with expectation (f) = 10° and standard deviation
a() = 1000/N2 = 707.107. Therefore the Z-score of such a trial is

t—u  t— 1000000
¢ 707.107

The normalization process produces a normalized trial value ' = 100 + (¢t —
1000000)/100. This is referenced to the theoretical distribution for 200-bit trials,
w =100, ¢" = V50 = 7.07107. The resulting Z-score is therefore

' —100 (r —1000000)/100 ¢ — 1000000
Z(t') = = /100 _ =Z(1). (A.2)
7.07107 7.07107 707.107

Thus the Z-score of a normalized trial is the same as the Z-score of the cor-
responding raw trial. Statistical yield is unaffected by the normalization process.

Z(t) = (A.1)

Analysis Variable Derivations

Let the mean output level of the MegaREG source be p, with standard
deviation . Let &, /, and b be the means of three samples of MegaREG output;
we make no assumption about the size of the samples. Let g, 0, and g, be the
standard deviation of the source during each of the respective sampling periods;
while it would be convenient to assume that o, like p, is a constant of the
device’s operation we d0 not need this assumption. By hypothesis, (h) = (I) =
(b) = p. By definition, o7 = (h*) — (h)> = (h*) — u; similar relations hold for /
and b. We add the assumption that the three sample outcomes are mutually
independent ((hl) = (h) (I) and likewise for the other two possible
combinations).

We may now calculate directly the expected value and variance of the
analysis variables D and A. For D,

(D) = (D < 2hl+l>_oz(h>+([;>—2<hl>
(n*) + 2(m) (1) O'h+IJ + 0] + 1 = 2uu

2

:M. (A.3)
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This establishes the relations of Equation 2 for D. An exactly analogous
derivation does the same for .4; having shown the procedure involved we shall
not take the space to show the full derivation.

We wish also to show that D and A are uncorrelated; that is, that they have
Zero covariance.

((h= D) (h+1 - 2b))
V12
(%) = (1)) + (¢hd) — (hD)) + ((2b1) — (2bh))

= Ny —0. (A4)

Covar[D, A] = (DA) — (D){(A) =

Secular Drift: Empirical and Theoretical Solutions

The primary reason for adopting the measures D and A is the possibility of
unknown departures from the theoretical distribution by the random source.
Since one of the possible concerns is instability, or secular drift, in the
distribution parameters, it seems obvious that the most reliable measures will be
those derived from a single session. If the mean of a particular intention (4, /, or
b) is the quantity being measured, the corresponding standard deviation (o, 7y,
or o) is best estimated as the standard error calculated from the trial-level
standard deviation estimate: ¢ = s.e. = s/n.

For concatenations of more than a single series, the pooled estimates of the
mean and standard deviation in an intention could be contaminated by any
parameter drift that might have taken place. If drift within a series is negligible,
we may consider D and A to have expectation 0 when computed for a series (Eq.
A.3), and to have known standard deviations in a given series, calculated by Eq.
2 from the individual standard errors of the intentional data. If secular drift is
substantial within a series, however, the exact derivations showing (D) = (A) =
0 are invalid. Nonetheless, we may test for the possible existence of such short-
term drift by examining the data within series. A change in the mean source
output level during a series can be detected (and distinguished from possible
intentional effects induced by the operator) by breaking the intentional data from
a series into arbitrary subsets, and testing for variation between the means of
these subsets in excess of variation expected on the basis of the trial-level
variance. For this test, each intention’s data were divided into ten segments. This
corresponds to the run structure for series using short runs, and using the same
number of segments in the series with long runs facilitates consistent evaluation
of the outcome. The result of the test for the presence of secular drift is thus a 3
with 9 d.f. for each intention. All three intentions were examined, although,
strictly speaking, only the baseline is a reasonable candidate for testing the
presence of short-term drift, since the active operator-intention effects might
show changes related to fatigue or other psychological responses. Also, the high-
density and low-density data were tested separately for drift, producing six 7
values for each series.
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TABLE A
Test for Secular Drift within Series

Intention Low-density Xz(p) High-density Xz(p)
High 1414 (0.081) 1399 (0.132)
Baseline 1288 (0.847) 1409 (0.096)
Low 1385 (0.197) 1386 (0.192)

The composite result of this test for the existence of within-series drift can
be computed by summing the y* values across the 149 series of original and
replication data: the sum of 149 y%s, each with 9 d.f., is a single > with 1341 d.f.
Across the three intentions and two densities, these y* values (and associated p-
values) are given in Table A. Even in the active intentions, none of these figures
attain statistical significance. We may conclude that any short-term secular drift
of the noise source taking place within individual series is too small for
statistical detection in this database and hence may be disregarded in the
subsequent analyses.

The data can be protected from longer-term secular drift effects between
series by calculating D and A at the series level, and combining these
parameters, rather than the raw data, when multi-series concatenations are
needed. The combination formulae for n values m; i = 1,...n, with
corresponding standard error estimates s;, are:

21 Mi/S} 2 1
=== -1 = . A5
S S VR SR VI (8-5)
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