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Operator-Related Anomaliesin a Random M echanical Cascade
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Abstract— Experiments with a ""Random Mechanica Cascade™ (RMC)
apparatus have yielded anomal ous resultscorrelated with pre-stated inten-
tionsof human operators. Based upon acommon statistical demonstration
device, thismachinealows9000 polystyreneballsto drop through a matrix
of 330 pegs scattering them into 19 collecting bins with a population
distribution that is approximately Gaussian. As the balls enter the bins,
exact counts are accumulated photoelectrically, displayed as feedback for
the operator, and recorded on-line. Operatorsattempt to shift the mean of
the devel oping distributions to the right or left, relative to a concurrently
generated basdine distribution. Of the 25 operators who have completed
oneor moreexperimental serieswith thisdevice, four haveachieved anom-
aous separations of their right and left efforts, and two others have dis-
played significant separationsof either their right or left efforts from their
basdlines. The overall mean difference of right versusleft efforts concaten-
ated across the total data base of 87 series (3393 runs), has a probability
against chance of <1074, with 15%of the individual seriessignificantat p
< .05, and 63%conforming to the intended directions.

The concatenated resultsdisplay a stark and curious asymmetry, in that
virtually al of theright vs left separationis provided by theleft vs baseline
separation. This pattern also appearsin the dataof several individual oper-
ators, and is not attributable to any known physical asymmetry in the
experimental system. In addition to the systematicasymmetricdeviation of
the distribution means, cumul ative excessesin the variances of theleft and
right distributions relative to baseline are dso observed, progressing to
statistical probabilities of .003 in the left efforts, but only .2 in the right.
More detailed study of the individual bin population patterns reveasthat
while most of the bins contribute to the overall mean shifts and variance
changes, those on the outer portionsare more influential than those near
the center.

Operator achievementstend to compound marginaly but systematically
in cumulativedeviation patternscharacteristicof the particular individuals
and, in severa cases, similar to those produced by the same operatorsin
microelectronic Random Event Generator (REG) experiments. Within
these characteristic patterns of achievement, some operators also show
sensitivitiesto secondary experimental parameters, such as instructed vs
‘ volitional establishment of the intended directions, or the presenceor ab-
sence of feedback displays. Other successful operators seem insensitiveto
such options.

Acknowledgement. The Princeton Engineering AnomaliesResearch program issupported by
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ments, Ltd., and The Ohrstrom Foundation.
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Two magjor protocol variations have been explored, one employing re-
mote operators, the other, multiple operators. I n the former, operatorswith
well-established performance in local experiments attempt to influencethe
bin distributions from remote locations up to severa thousand milesfrom
the laboratory. Significant resultsare again obtained that are quite similar
to those of the local experiments, with the exception that the overall right
and |eft distribution variancesare smaller than those of the baseline. In the
multiple operator experiments, early results show little resemblance to
those achieved by the participating individuals alone.

Introduction

Through an extensive program of experiments previously reported in this
Journal and elsewhere (Jahn & Dunne, 1986; Jahn, Dunne, & Nelson, 1987,
Nelson, Dunne, & Jahn, 1984), it has been established that human operators
can systematically influencethe output of various microelectronicrandom
event generators(REGs) to a marginal, but statistically significantextent, in
accordance with pre-stated intentions. Specifically, the results have been
found to correlate strongly with the individual operatorsand their intended
directions of effort, and in some cases with certain secondary parameters
such as whether the effort is volitionally chosen or randomly assigned, or
whether the sequencing of trialsis manual or automatic. Curiously, how-
ever, the performance seems lessdependent on the detailsof the microelec-
tronic noise:sourceand processing circuitry, including varioushard-wired or
programmed pseudo-random systems.

The demonstrated insensitivity of these microscopicexperimentsto their
interior detail ssuggests broader exploration of the response of other classes
of random physical processesto operator intention. In particular, it seems
important to ascertain whether similar anomalies can be demonstrated on
macroscopi ¢ systems employing other than electronic interactions. For this
purpose, we have developed and applied a device termed a" Random Me-
chanica Cascade," which isalarge-scale variant on the prototypical "' Gal-
tons Desk."

In 1894, the British eugenicist Francis Galton described a mechanical
apparatus to illustrate certain statistical aspects of natural evolution. His
description and interpretation are sufficiently relevant and ingenuous to
bear repetition:

It isaframe glazed in front, leaving a depth of about a quarter of an inch behind
theglass Stripsare placedin the upper part to act asafunnel. Bdow the outlet of the
funnel stand a succession of rows of pins stuck squarely into the backboard, and
below these again are a series of vertical compartments. A charge of small shot is
inclosed. When the frame is held topsy-turvy, dl the shot runs to the upper end;
then, when it isturned back into itsworking position, the desired action commences.
. . . The shot passesthrough the funnel and issuing from its narrow end, scampers
devioudly down through the pinsin a curious and interesting way; each of them
darting a step to the right or left, as the case may be, every timeit strikesa pin. The
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pinsaredisposedin a quincunx fashion, so that every descending shot strikesagainst
a pin in each successive row. The cascade issuing from the funnel broadens as it
descends, and, at length, every shot findsitself caught in a compartment immedi-
ately after freeingitself from thelast row of pins. The outline of the columns of shot
that accumulate in the successive compartments approximates to the Curve of Fre-
quency, and isclosely of the same shape however often the experiment is repeated.
The principle on which the action of the apparatus depends is, that a number of
small and independent accidents befall each shot in its career. In rare cases, along
run of luck continuesto favour the course of a particular shot towardseither outside
place, but in the large majority of instances the number of accidents that cause
Deviation to the right, balancein agreater or less degree those that cause Deviation
to the left. Therefore most of the shot findsits way into the compartmentsthat are
situated near to a perpendicular line drawn from the outlet of the funnel, and the
Frequency with which shots stray to different distancesto the right or |eft of that line
diminishesin a much faster ratio than those distancesincrease. Thisillustratesand
explainsthe reason why mediocrity isso common. (Galton, 1894, pp. 63-65)

Galton’s concept of demonstrating the development of Gaussian distribu-
tions by the compounding of a multitude of random binary eventshassince
been extended into numerous other sectors, and various versions of his
machine may be seen in science museums and instructional laboratories
throughout the world. Our particular interest hereis as a target for anoma-
|ous man/machine interactions.

Equipment and Protocol

Our RMC machineisroughly 10" X 6 in size, and employs 9000 polysty-
rene spheres 3” in diameter, cascading through a quincunx array of 330 3"
nylon pinson 34" centers, in much the same fashion as Galton described
(Figure1). A belt and bucket conveyor transports the ballsfrom a plenum at
the bottom to afunnel at the top, from which they bounce down through the
matrix of pinsin complex stochastic paths, accumulating finally in 19 paral-
lel vertical collecting binsarranged across the bottom. The front of the pin
chamber and collecting binsis clear acrylic, so that both the active cascade
of the balls and their disposition into the developing distribution of bin
populationsare visible asfeedback to the operator. By appropriate combina-
tions of peg spacings, bal inlet configuration, and bal and peg material
properties, the resulting distribution of ball populations in the collecting
bins can be brought to a good approximation of a normal Gaussian distri-
bution.

The entrance to each collecting bin is equipped with an optoelectronic
counter. All 19 counters are scanned on-line by a microprocessor which
transmits in real time the ordered accumulation of counts in each bin to
LED displaysat the bottom, and to a microcomputer where the complete
sequenceisregistered on disk asafileof 9000 characters. Eachfileisindexed
by file number, direction of effort, operator, date, time, humidity and tem-
perature within the pin cavity, and variousother experimental parameters.
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Fig. 1. Random Mechanical Cascade apparatus (RMC).

A logbook is aso maintained with the same indexing information, a photo-
graph of each completed run distribution showing the bin totals displayed
on the LED’s, the bin totals registered by the computer other summary
information including total populations right and left of the center bin, a
right-left ratio, the distribution mean and standard deviation, and any ap-
propriate comments.

The standard experimental protocol calls for the operator, seated on a
couch about eight feet from the machine, to attempt to distort the distribu-
tion of ballsto theright or higher numbered bins(RT), or tothe left or lower
numbered bins (LT), or to generate a basdline (BL). These intentions are
interspersedin concomitant sets of three runs, each of which lasts about 12
minutes. The sequence of each tripolar set of runs may be chosen by the
operator (volitional assignment), or may be defined by some pre-established
recipe (instructed assignment). Each set must be completed in one session,




Random Mechanical Cascade 159

lastingabout one hour. Theoperator hasthe choiceof lighted or blank LED
feedback displays, and employs his own subjective strategies. Operators
scheduletheir own sessions, and are encouragedto generatelargedata bases,
usually dividedinto independent experimental seriesof 10 tripolar setsof 3
runs.* Secondary parametersare fixed within a given series, but the opera-
tor's subjective strategy is not controlled. All operators are uncompensated
anonymous volunteers who are willing to provide the requisite large data
bases. None claims special ahilities, and no screening or training of opera-
torsisattempted. (Althoughgeneric pronounsare used throughout thistext,
roughly equal numbers of male and female operators have contributed to
the data base.)

The primary purpose of the tripolar experimental format is to mitigate
any possible biasing effects of physical or environmental changesin the
operation of the machine, such aslong-term drift resultingfrom pin or bal
wear, or the shorter-term influencesof temperature or humidity. Variation
of humidity, for example, has been found to correlatewith small changesin
the distribution variance, and very dightly with changes in the mean. (A
detailed assessment of long-term drift of the distribution mean, including
contributions from wear and mechanical factors, vibration, humidity, tem-
perature, gravitational and tidal effects, and operator positionisavailablein
Nelson, Dunne, & Jahn, 1988a, which also includesa description of qualifi-
cation and calibration proceduresand the treatment of any technical prob-
lemsthat may arisein agiven run.)

The machine, its counting and data recording systems, and the experi-
mental protocol just described have evolved over the course of the program
(Nelson, Dunne, & Jahn, 1983). In the earliest exploratory experiments,
data were manually recorded as mechanically measured bin fill heights, but
it soon became clear that these were compromised by differential stacking
patterns of the balls, so that the much more precise photoel ectronic count-
ing system was devised. Similarly, early attempts to establish a universal
baseline distribution by copius calibration data had to be abandoned once
the effectsof temporally varying physica conditions, such as temperature,
humidity, pin and bal wear became apparent. At that point, it wasdecided
to include only differential data generated in matched tripolar runsin the
formal data base. All preceding runs, and any subsequent runs deviating
from that protocol, are now regarded asexploratory, and indexed assuchin
aseparatedatafile. Alsoincluded in the exploratory data are severa seriesin
which operators attempted to influence the accumulations in particular
individual bins. Although interesting results were obtained in these experi-

* Prior to October, 1983, 20 setsconstituteda series. In a few cases, oper ator shave completed
dightlylessor morethan the prescribed number of setsper seriesdueto technical malfunction,
recor d-keepingerrors, or unavoidabledeparturefrom thelaboratory. Rather than excludesuch
data, they havebeen included asodd-sizeseries. If lessthan 7 setshavebeen gener ated,however,
the serieshasbeen voided and the data retained in a separ atefile.
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ments, this paper is confined to tripolar protocolsaddressing the shift of the
distribution mean.

Statistical Treatment

Given the three-dimensional complexity of the individual ball collisions
with the pegs, the complicatingeffects of ball-ball collisions, and the irregu-
laritiesof theinlet flow, any deterministic dynamical modeling of the flux of
bals through the pin matrix is unattainable. In this respect, the RMC ex-
periment differssubstantially from the strictly binary REGs, where precise
theoreti cal expectationsarederivable. However, arudimentary quasi-binary
model of the RMC datistical process, analogous to that more rigorously
employed for the REG experiments, can be heuristically based on the vir-
tually Gaussian character of the data distributions. Asshown in Figure 2, a
histogram of the 19 bin populationsfor the 1131 baselineruns of the formal
data base is nicdly fit by a Gaussian curve normalized to the distribution
mean and standard deviation. To besure, thereisa dight excess population
of the end bins by balls reflected from the side walls of the machine, and of
the center bins by balsfaling directly through the finite pin matrix, but
these do not compromise the gross utility of the Gaussian model.

Such a quasi-binary approach can illustrate the immense statistical lever-
age of this kind of experiment. For example, using bin number as the
statistical variable, the mean of thisquasi-Gaussiandistribution, u, isfound
to be approximately 10.023 and the standard deviation, a, about 3.27 bins.
Although this distribution derives from a very complex ensemble of colli-
sional events, it can be modeled, for statistical purposes, as if it were the
result of N simplebinary eventsfor each ball, in each of which it isdeflected
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Fig. 2. RMC: Basdline mean bin populationson theoretical Gaussian (1131 runs).
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either to theright or to the left by some uniform distance, D = 0.5 bin. If the
probabilitiesfor deflectionin either direction are equal, binomial statistics
requires a distribution variance of > = D?N. Hence, the complex physica
processactually experienced by asingleball isequivalentto N ~ 43 elemen-
tary binary choices, which may be regarded as a minimum estimate of the
information content of asingle bdl's tragjectory. Since there are 9000 such
"pall-trids” in a single run, the statistical power of each run consists of
approximately 387,000 binary equivalent bits. (By comparison, a typica
REG run of 50 trialsyields 10,000 bits.)

The stochastic dynamical behavior of this quasi-binary system is found
empirically to convergeto a stable statistical ensemble with a well-bounded
mean after roughly one-third of the 9000 balls have been processed. In
similar fashion, the optimum number of runs per experimental series, which
must be atrade-off between operator comfort and statistical confidence, can
be assessad in terms of the standard error of the estimatesof the seriesmean.
For example, the earliest series lengths were arbitrarily set at 20 runs per
intention, for which the standard error correspondingto a 95% confidence
interval around the grand baseline mean wasfound to be.0078 bins. But for
thefirst 10 runs of these series, the standard error wasonly .0111 bins, still
adequately small to alow any systematic anomaliesto cumulate rapidly to
significant deviations from expected values. Thus, we were able to respond
to operator complaints that the 20-run serieswere too long by reducing the
protocol to 10 runs per intention, and the series data accumulation rate
increased accordingly.

The absence of any precise theoretical expectations, combined with the
long-term variations in the calibration data mentioned earlier, force any
search for distribution anomalies correlated with operator intention to pro-
ceed on a loca differential basis. That is, only the cumulative systematic
differencesamong the right, left, and baseline efforts within a given tripolar
st can profitably be assessed. The most appropriate statistical tool for this
purpose is Student's t-test for paired observations, supplemented by a con-
ventional one-way analysis of variance (ANOVA). More specificdly, the
primary assessment of the effect of operator intention on the distributions
employs correlated t-tests to compare differences within the tripolar data
sats for each series, or for larger concatenations, taking into account the
small, but occasionally significant correlations among the three strings of
data due to common influences of machine wear, humidity, and other
possible but unidentified effects.

The difference between the right and left efforts (RT-LT) is regarded as
the primary indicator of an effect of operator intention. It isthen possibleto
perform only one other fully orthogonal comparison, namely that between
the baseline and the algebraicaverage of the right and left efforts. However,
since interpretation of this latter quantity is somewhat complex, we have
chosen to present the conceptually ssmpler paired t-testsfor both RT-BL
and LT-BL differences, supplemented by various graphic displays. While
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these tests are not fully independent of the primary RT-LT comparison,
they are instructivein locating the three intentions relative to each other,
and, of course, any one of thethree testsconstitutesa coherent, standardized
Mmeasure across series.

Even in thislocd differential treatment, the raw data show correlations
among the three data strings, perhaps attributable to shorter-term vagaries
of machine operation. These are assessed by Pearson product-moment coef-
ficients, which are helpful in explaining the considerablerange of the stan-
dard deviation of the differences, and thus the variationsin the size of the
mean shiftsthat may be regarded as significant. For example, asthe corrdla
tion between RT and LT dataincreases, the standard error of thedifferences
decreases, yielding a larger t-scorefor a given mean difference.

For a supplementary perspective, the three conditions, RT, LT, BL, can
be considered as three treatments in a conventional one-way analysis of
variance. Thisapproach can establish an overall estimate of unexplained, or
error, variance appropriate for the comparisons, and it can explore covar-
iatessuch as humidity and temperature, but it cannot incorporate any of the
secondary experimental parameters, such as feedback mode or instruc-
tional/volitional options, since only a few operators have explored these
systematically.

Consonant with the earlier REG experiments, it proves instructive to
display the primary indicator of the effect of operator intention on the
RMC, that is, the RT-LT difference, as a graph of cumulative deviation
from the expected difference, given no effect, of zero. Likewise, the separate
behaviorsof RT and LT may be graphed ascumulative differencesfrom the
local BL values. To establish the scale of the cumulative deviations, enve-
lopesof the t-scorescorrespondingto given probabilitiesagainst chance may
be superimposed on these graphs.

Ovedl Reaults

Mean Shifts Correlated With Intention

The primary RM C data base consists of 87 series(3393runs) generatedby
25 individual operators. The overall results are shown in Figure 3, and in
Table I.* For the grand concatenation of these data, the paired t-test for
RT-LT yiddst = 3.89, p < 107, one-tailed in direction of intention, with
15%o0f the seriesand 24% of the individual operator data bases beyond the
5%chance probability levd and 63%splitting RT-LT in theintended direc-
tion. The one-way ANOVA yieldsa comparably significant departure from
chance expectation (F= 8.13, with 2 and 3390 df, p = 3 X 107%). The

* All tablesarein the Appendix. Much more detailed results of al RMC experiments per-
formed to date are presented in two PEAR Technical Reports(Nelson, Dunne, & Jahn, 1988a
and 1988b). Many of the summary conclusions of this paper are supported by data displayed
there, but not included here.
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Fig. 3. RMC cumulativedeviations: all data.

cumulative deviation graphs that trace the progress of these mean shifts
through the various operators and series display notable consistencies of
linear trends superimposed on backgroundsof stochastic variations. Thus,
by any of the statistical criteriaemployed, thereisclear evidenceof asignifi-
cant anomaly compounding from the gradual accumulation of small but
consistent shiftsin the distribution means, in afashion quite similar to that
found in the microelectronic REG and pseudo-REG experiments.

Asymmetry Effect

Beyonditsexistenceand magnitude, the overall RM C anomaly entailsan
additional curiosity not found in the REG experiments. Namely, the con-
catenated resultsshown in Figure 3 display a stark |eft-going asymmetry. In
fact, the right and basdineeffortsare statistically indistinguishableover the
full courseof theseexperiments, so that theentire RT-LT effectiscontained
in the systematic separation of the left effortsfrom both of the others. This
asymmetry is not explainable in terms of any known physical biasin the
experimental system, especialy given the tripolar protocol and differentia
data reduction process, and hence can be correlated only with operator
intention, suggesting that it may have some psychological or neurologica
implication. Examination of theindividual operator data basesmight tempt
the assignment of much of this effect to one or two of the most prolific
operators, who individually show strong left-going asymmetries. However,
removal of their contributionsfailsto symmetrizethe remaining data. Alter-
nately, the influences of every operator on the total data base may be bal-
anced by concatenatingequal subsetsof theindividual data, for examplethe
first 10 runs only of each of the 25 operators (Figure 4). Again the traces
proceed steadily toward significant terminal valuesfor RT-LT and LT-BL
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and show the same asymmetry, indicating that the overall effect reflects
contributions from all operators in the group.

Secondary Parameters

Anaysis of the composite data base for correlations with secondary pa-
rameters is necessarily limited since all operators have not contributed
equally to the various categories. The mode of instruction, that is, whether
the order of intentions in each tripolar set is chosen by the operator at the
time of the session (volitional), or is prespecified for the entire series (in-
structed) has been varied in six operator data bases, and across these, the
qualitative results seem to indicate a preference for the volitional mode;
although the difference is not statistically significant (t = 0.895, p = .371,
2-tailed, d = 779). Similarly, the feedback has been varied for three opera-
tors by having the LED counter displays on or off, and here even less
differenceis found, although the results of each mode remain individually
significant (LED on: t = 1.829, p = .034, 1-tailed, d = 359; LED off: t
= 2.845,p = .002, 1-taled, df = 249; At on/off = 0.878,p = .379, 2-tailed, d
= 608). Lesswell defined parameters, such asdate or time of day, have aso
been examined and show no clear influencesacrossthetotal data. However,
when these various parameters areanalyzed on an individual operator basis,
some correlations can be quite strong, indicating important operator-spe-
cific sengitivities. For example, with the LED display off, one operator (55)
achieves a RT-LT t-score of 1.915 (p = .029), but with the display lit,
performsat chance (t = 0.294, p = .385). Similarly, in the Volitional mode,
another operator (70) obtainsa RT-LT t-score of 2.143 (p = .019), but in
the Instructed mode produces results slightly opposite to intention (t
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= —0.693, p = ,253). Several other examples are displayed in Nelson,
Dunne, and Jahn, 1988b.

Variance and Goodness-of-Fit Effects

In the REG experiments, it was found instructive to array al terminal
seriesscores as frequency distribution histograms(Jahn, Dunne, & Nelson,
1987; Jahn, Nelson, & Dunne, 1985). To pursue similar displays of the
RMC results, we must again utilize the differential treatments, RT-LT,
RT-BL, and LT-BL, comparing the distribution of seriest-scoresagainst a
theoretical t-distribution for the nine degrees of freedom appropriate to a
ten-run series. The resultsin Figures5a, b, ¢ confirm the shift of the distri-
bution in thedirection of intention for RT-LT and LT-BL, and in addition
show an increase in the distribution variancein all three cases.

Similar frequency histogramsfor the run means, show little effect on the
variance of the distributions, but the BL data are found to fit the expected
Gaussian better than expected by chance (x§,. = 7.75, 17 df, p = .97) while
both the RT and LT distributionsare relatively rough, (x;1 = 21.63,p= .21
and x{1 = 35.05, p = .0065).

It next seemsreasonableto inquire whether the individual run bin popu-
lation distributions might themselvesdisplay variance changes as ancillary
effects of operator intention. In the REG studies, no such effects were ob-
served at thetrial or run levels, but the situation appearsto be quitedifferent
for the RMC. Figure 6 displaysthe cumulative differencesin the standard
deviationsof the RT and LT runs compared to the BL run of the same set.
The generaly positive trends culminate as a highly significant increase in
the LT run variancesrelativeto the BL, and a non-significant increasein the
RT run variances. This effect is more pronounced for some individual
operators than others, but the concatenated data suggest that, on balance,
both LT and RT effortsto shift the mean also entail a broadening of the bin
population distributions in some fashion.

Individual Bin Populations

To pursue such goodness-of-fit issuesin yet more detail, the response of
al 19 individual bin populations to operator intention may be extracted
from the data base management system. Over a sufficiently large number of
runs, each of these bin populations should, by chance, distribute normally
about some mean, with somestandard deviation, in terms of which parame-
tersany given population anomaly may be statistically quantified. Immedi-
aely instructive is a graphic display of the differencesin individual bin
populationsbetween the RT, LT, and BL run sets over the entire data base,
that highlights the major contributions to the overall distribution mean
shifts(Figures7a,b,c). On these histogramsthe significancesof each of these
differencesisindicated by a.05 probability envelope, computed on the basis
of the individual bin population standard deviations. Consistent with the




—

166 B. J. Dunne, R. D. Neson, and R. G. Jahn

14

al RT-LT
12 THEORY

00000

10+

FREQ (4)

-2 I 1 " A —_ "

t-SCORES
14

b) RT-BL

FREQ ()

t-SCORES

¢) LT-BL .
12 THEORY
FIT ©0o000

x 8r
6t
g
[ st
cd
-]
i -HOEHJ[\-;_A
° i
2 - - T - —— T - - - ~—
-5 -4 -3 -2 -1 0 1 2 3 4 5

t-SCORES
Fig. 5. RMC seriest-score hisograms. @) RT-LT; b) RT-BL; c) LT-BL.

overall behavior of the run means, the RT-BL bin population differences
appear quite randomly digributed, whereasa majority of the LT-BL and
RT-LT differencesare supportiveof themean shifts. Because of their larger
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"leverage,"" outer bins contribute more heavily to the shifts than in-
ner bins.

The data base management system al so all ows assessment of the temporal
evolution of the bin-fillingpatterns. Although this has not yet been pursued
systematically, cursory examination of these and of the progress of the
overal mean of the developing distributions has not indicated any strong
pattern of localization of the anomalous effectsin any given portion of the
12-minute experimental period. Rather, like the REG effects, these seem
statistically wdl distributed throughout the entire run.

Individual Operator Results

Asfound in our REG experiments, many of the RMC cumulative devia-
tion graphsfor individual operatorsare sufficiently replicableand internally
consistent to be regarded as characteristic* signatures’ of achievement by
those particular operators. These signatures vary considerably from one
operator to another and, in some cases, are found to be quite sensitiveto the
secondary experimental parameters. The grand concatenations of results
across operators presented above, although reinforcing the credibility of the
phenomenon, tend to obscure these important, potentially instructive, indi-
vidua differences. Hence, the balance of thisarticlewill addressindividual
operator performance.

Correlations With Intention

Four of the 25 operators have achieved dtatistically significant overall
RT-LT separations positively correlated with their directional intentions,
based on t-tests for paired data. Two show significant overall results in
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RT-BL and two others have significant LT-BL achievements. Three opera-
tors resultsare opposite to their intentions to a degree unlikely by chance,
one each in RT-BL, LT-BL, and RT-LT (Table 1). Detaled statistical
analysesfor al theindividual and compounded seriesare available (Nelson,
Dunne, & Jahn, 1988b).

More informative than these summary results, however, is the internal
consistency of many of theindividual cumulative deviation graphs, wherein
the characteristic signatures of performance become apparent. Several of
these cases display virtualy linear slopes of effect superimposed on the
background of statistical fluctuations, reflectingindividual preferencesfor a
particular direction of intention, and establishing individual scales of
achievement. In afew cases, the RM C signaturesare qualitatively similar to
those achieved by the same operators on the REG experiment, suggesting
that the overal phenomenon may be less device-specific than operator-
specific.

Secondary Parameters

Individual operator sensitivities to secondary parameters, such as the
mode of instruction, or the feedback display being on or off, are also char-
acteristically varied. In some cases, an operator's performance may be cate-
gorically differentin the volitional protocol than in the instructed, or when
live feedback is provided or denied. Y et other operators seem insensitiveto
these options. As mentioned, the tendency toward larger variancesin the
RT and LT datais not uniformly shared by all operators, and theindividual
bin population patterns vary considerably from one operator to another
(Nelson, Dunne, & Jahn, 1988b). All of thisisconsistent with theindividual
operator variations found in the REG studies, and suggests that perfor-
manceisin some way related to characteristicsof personal consciousness, as
well asto physical aspects of the devicesand processes with which they are
interacting.

Oneother finding of the REG studiesthat seemsto carry overtothe RMC
resultsis the departure of some baseline data from fully chance behavior
(Jahn, Dunne, & Nelson, 1987; Jahn, Nelson, & Dunne, 1985). Although,
for al the reasons mentioned earlier, RM C data processingis restricted to
differential criteria, examination of the individual operator raw data none-
theless suggeststhat in several casesthe RT-BL or LT-BL differences may
beattributableto unusually high or low baselinetrends. Asone example, the
right-going efforts of operator 42 have a grand mean of 10.017, which is
actually belowthegrand baseline mean for all operatorsof 10.023, yet isstill
highly significant relative to the baseline mean of 9.997. Other casesof this
sort are included in Table 1.

Remote Protocol

All of the data reported and discussed above have been obtained with the
operatorsseated on acouch afew feet beforethe machine, with itsoperation
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clearly visble to them. Again in parale to our REG research, a comple-
mentary program of experiments has been undertaken wherein operators
who have aready generated datain this*'loca"" protocol, attempt the same
influence on the RMC performance from remote locations. In this remote
protocol, the operator arrangesin advancea specifictime duringwhich a set
of three runs will be initiated by members of the laboratory staff, who
remain blind to the sequence of intentions. The order is chosen by the
operator, who communicates this information by telephoneor letter after
the results are recorded, but before any feedback is given. Ten operators
have so far completed 26 such series, again of 10 tripolar sets each, over
distancesranging up to severa thousand miles.

Of thesecompl eted series, four have shown cumul ativedeviations beyond
the .05 chance expectation for the RT-LT difference. The concatenated
results, presentedin Figure 8, show remarkably similar characteristicsto the
local data, includingthe strong left-going asymmetry, and the average mag-
nitude of the RT-LT split (.0064 bins, compared to .0057 local). The only
overall distinction in the remote data is in the standard deviationsof the
runs, which are consistently, though not significantly smaller in the right
and left conditions than in the basdlines, compared to the reverse for the
local runs. Theindividual bin popul ationsare consistentwith thisfeature,in
the sensethat a greater portion of the mean shift burden seemsto be borne
by theinner bins. These data are summarized in Table 2 and presented in
detail in Nelson, Dunne and Jahn, 1988a, b.

MultipleOperator Protocol

A second major protocol variation has been undertaken to explore the
effect of more than one operator simultaneously attempting to influencethe
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distribution. Nine local series by seven co-operator pairs, along with two
remote series by two, and one remote series by seven cooperating individ-
uals have been performed, following the same technical procedures as for
single operators. So far, these results show no overal RT-LT separation,
although in contrast to the single operator local and remote patterns, both
the LT- and RT-going efforts display strong right-going trends relative to
BL, with the RT-BL valuessignificant at the p = .044 level and the LT-BL
oppositetointentionat p = .055 (Figure9). Theseresultsare summarized in
Table 3 and detailed in Nelson, Dunne and Jahn, 1988a, b. Although this
data base is far from sufficient to distinguish replicable patterns for given
operator pairsto comparewith theindividual results, it already appearsthat
no simplelinear combination of the operators' influences obtains. Rather,
consistent with the predictions of our theoretical model, a more com-
plex superposition seems to be involved (Jahn & Dunne, 1986; Jahn &
Dunne, 1987).

Summary

The RMC has proven to be an effective and efficient experiment for
exploring the interaction of human operators with random physica sys
tems, but in severa respects the resultsare quite complex and will require
much more study to comprehend fully. At thisjuncture, thefindingsmay be
summarized in the following categories:

1. There is clear evidence of a significant anomalous separation of the
means of the overall right- and | eft-intended experimental distributions,
correlated with the pre-stated goalsof the human operators.

2. Compared to the concurrently generated baselinedata, there isa stark
and unexplained asymmetry in the directional results. Namely, the
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RT-LT separation resides amost totally in the LT-BL disparity; the
RT and BL data are statistically indistinguishable.

3. Theoveral effectsreflect the integration of very small shiftsthat com-
pound with some regularity as the data base increases, and cannot be
attributed to large contributions from any one operator.

4. Concatenation of individual bin population data indicatesthat the ma-
jority of bins contribute to the overal mean shift trends, but that the
outer binsare more effectivethan those near the center.

5. Preliminary examination of the evolution of the distribution means
over the course of individual runsindicatesno clear pattern of concen-
tration of effectsin any particular portion of the 12-minute experimen-
tal periods.

6. The standard deviations of the experimental distributions tend to be
larger for the right and left-intentioned runsthan for the baselines. The
LT-BL excesscompoundsto a highly significantvalue over thefull data
concatenation.

7. Results are clearly operator-specific, often displaying statistically re-
peatablecharacteristictrends that differ from one operator to another.

8. In severa cases the individual operator performances are sensitive to
secondary parametersaf the experimental protocol; in other cases, they
are not.

9. Operator signatureson RM C often show similaritiesto effectsobtained
by the sameindividual son the micro-electronic REG and pseudo-REG
experiments, implying that while the results are operator-specific, and
in some cases condition-specific, they may not be so device-specific.

10. Although RMC data must be processed on a differential basis, thereis
good indication that for some operators the differential effects are
driven as much by anomaliesin the baselineas by those of the right and
left efforts.

11. Separation of operator and machine by distancesup to severa thousand
miles does not appear to inhibit the effect, or to ater its primary char-
acterigtics, except for a narrowing of the right and left run distribution
variances, relativeto basdine.

12. Onthe basisof very limited data, the cooperative effortsof two or more
operatorssimultaneouslyinteracting with the device appear to produce
radicaly different resultsfrom the individual influences.

Again, more detailed substantiation of these conclusionsmay be found in
the two Technical Reports (Nelson, Dunne, & Jahn, 1988a and 1988b).

In summary, the Random M echanical Cascade has becomean important
tool in the ongoing study of the interactions of human consciousness with
random physical systems. Taken in conjunction with the findings of our
other experiments, the RMC results have confirmed the active role of
human intention in the establishment of physical reality, and have provided
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additional insights to guide the evolution of a more incisive theoretical
model of the underlying processes.
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Appendix
TABLE 1A
Local, RT-LT
# # RT LT RT-LT RT-LT RT-LT #Series #Series t-score
Opr. Series Pairs Mean Mean S DDiff. r-score Prob. p<.05 p<.5 Corr.

10 17 270 10.0297 10.0195 0521 3233 7x107* 7(1) 11 1.659
14 1 19 10.0273 10.0278 0417 -0.053 (.479) — — 1.059
16 4 37 10.0208 10.0035 .0509 2.067 .023 1 3 0.966
17 1 10 99968 9.9994 .0534 -0.157 (.440) —_ —_ -1.895
20 2 20 10.0222 10.0228 0339 ~0.076 (.470) — 1 2.553
2i 1 10 9.9781 10.0124 .0388 —2.799 (.010) — (1) — 2.327
41 7 91 10.0242 10.0243 .0527 -0.013 (.495) — (1) 3 0.605
42 3 30 100165 9.9990 0426 2.250 016 1 3 -0.317
44 1 20 10.0362 10.0343 0531 0.162 436 — 1 0.437
49 1 10 10.0291 10.0212 0375 0.659 .263 —_ 1 0.091
51 1 10 10.0066 10.0002 .0307 0.655 264 —_ 1 2.260
53 2 20 10.0064 10.0134 .0400 —-0.782 (.222) _ 1 0.519
55 20 300 10.0283 10.0244 .0490 1.373 085 2 13 2.994
63 1 7 10.0342 10.0126 .0358 1.600 080 —_ 1 1.750
64 1 10 10.0219 10.0241 .0523 -0.135 (.448) — —_ -0.817
66 1 10 9.9907 10.0017 0478 —0.728 (.243) —_ — 0.034
68 2 40 10.0180 10.0221 .0508 -0.511 (.306) — 1 0.233
69 1 11 10.0253 10.0121 0359 1.219 126 — 1 1.019
70 5 50 10.0206 10.0107 0499 1.412 .082 2 3 -0.039
78 4 40 99919 99910 0529 0.111 456 — 2 0.550
79 1 9 10.0448 10.0329 0666 0.535 .304 — 1 -0.072
84 3 30 10.0138 10.0058 0549 0.799 215 — 2 -0.316
91 1 16 10.0325 10.0395 0383 -0.729 (.239) —_ —_— 1.394
93 3 31 10.0219 10.0045 0466 2.075 .023 — 3 1.078
94 3 30 9.9977 9.9841 0462 1.605 .060 — 3 0.550
All 87 1131 10.0229 10.0172 .0493 3.891 5Xx10™° 13(3) 55 6.301
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TABLE 1B
Local, RT-BL
# # BL RT RT-BL RT-BL RT-BL # Series # Series
Opr. Series Pairs Mean Mean S.D.Diff. t-score Prob. p<.05 p<.5
10 17 270 10.0328 10.0297 .0508 —-0.990 (.162) —(2) 6
14 1 19 10.0322 10.0273 .0483 —0.440 (.333) — —
16 4 37 10.0145 10.0208 .0496 0.778  .221 — 3
17 1 10 10.0022 9.9968 0471 —-0.361  (.363) — —
20 2 20 10.0014 10.0222 .0471 1.977 .03l 1 2
21 1 10 10.0000 9.9781 .0423 -1.644 (067) — —
41 7 91 10.0211 10.0242 .0531 0.559  .289 — 4
42 3 30 99968 10.0165  .0449 2410 .01t 1 3
44 1 20 10.0420 10.0362 .0457 —0.566 (.289) — —
49 1 10 10.0219 10.0291  .0462 0.488  .319 — 1
51 1 10 10.0047 10.0066 .0456 0.133 448 — 1
53 2 20 10.0173 10.0064 .0589 —0.830 (.209) — —
55 20 300 10.0272 10.0283  .0497 0375 354 2( 11
63 1 7 10.0207 10.0342 .0458 0.782  .232 —_ 1
64 1 10 10.0164 10.0219 .0476 0.364  .362 — 1
66 1 10 10.0210 99907 .0306 —3.142 (.006) —(1) —
68 2 40 10.0224 10.0180 .0453 —0.604 (.275) — 1
69 1 11 10.0463 10.0253 .0679 —1.023 (.165) — —
70 5 50 10.0185 10.0206 .0572 0.269  .394 — (1) 4
78 4 40 9.9979  9.9919 .0559 —0.683 (.249) — 2
79 1 9 10.0214 10.0448 .0649 1.079 156 —_ 1
84 3 30 10.0123 10.0138 .0425 0.189  .426 — 2
91 1 16 10.0290 10.0325  .0462 0.306  .382 — 1
93 3 31 10.0142 10.0219 .0492 0.875 .194 — 2
94 3 30 10.0041 9.9977 .0557 -0.636 (.265) —(1) 2
All 87 1131 10.0229 10.0229 .0501 0.047 481 4(6) 48
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TABLE 1C
Local, LT-BL
# # BL LT LT-BL LT-BL LT-BL # Series #Series

Opr. Series Pairs Mean Mean S.D.Diff. t-score Prob. p<.06 p<.5
10 7 270 10.0328 10.0195 0536 —-4.077 2Xx107 6 12

14 1 19 10.0322 10.0278 .0402 —-0.474 321 —_ 1

6 4 37 10.0145 10.0035 .0480 —1.389 .087 1 3

7 1 10 10.0022 9.9994 .0404 -0.213 418 — 1

20 2 20 10.0014 10.0228  .0435 2201 (0200 —(1) —

2 1 10 10.0000 10.0124 .0388 1.010  (.169) — —
4 7 91 10.0211 10.0243 .0487 0.624 (.267) — 3

42 3 30 9.9968 9.9990 .0529 0.232  (.409) — 1
44 1 20 10.0420 10.0343 .0483 -0.715 242 — 1

49 1 10 10.0219 10.0212 .0369 —0.058 478 —_ 1

511 1 10 10.0047 10.0002 .0322 —-0.436 337 1
5% 2 20 10.0173 10.0134 0528 -0.332 372 — 1

% 20 300 10.0272 10.0244 .0494 —0.985 .163 1 13

63 1 7 10.0207 10.0126 0391 -0.550 .301 — 1
64 1 10 100164 10.0241 .0506 0.482  (.321) — _

66 1 10 10.0210 10.0017 .0590 —1.038 .163 — 1

68 2 40 10.0224 10.0221 .0469 -0.031 .488 1(1) 1

69 1 11 10.0463 10.0121 .0680 —1.664 064 —_ 1

70 5 50 10.0185 10.0107 .0484 -1.136 131 —_ 3
78 4 40 9.9979 9.9910 0515 —0.856 .199 — 3
79 1 9 10.0214 10.0329 .0394 0.872  (.204) — —

84 3 30 10.0123 10.0058 .0435 —0.823 .209 1 2
91 1 16 10.0290 10.0395 0566 0.743  (.235) — —
93 3 3l 10.0142 10.0045 .0440 -1.221 116 — 2

94 3 30 10.0041 9.9841 .0466 —-2.349 013 1 3
All 87 1131 10.0229 10.0172 .0500 —3.787 8X 107 11(2) 55

TABLE 2A
Remote, RT-LT
# # RT LT RT-LT RT-LT RT-LT #Series #Series t-score

Opr. Series Pars Mean Mean  S.D.Diff. t-score Prob. p<.05 p<.5 Corr.

10 6 61 10.0171 100126  .0538 0.651  .259 —_ 4 —-0.713

12 1 9 10.0020 9.9808  .0580 1.100  .152 — 1 —0.876

16 7 70  10.0047  9.9981  .0520 1.070  .144 2 4 0.260
41 1 10 10.0150 10.0126  .0262 0.288  .390 — 1 2.208
49 3 30 100076  9.9934  .0392 1991  .028 1 3 1.958
68 2 20 9.9994 100108 038  —1.326 (.100) —(1) — 0.874
69 1 9 10.0318 10.0429  .0480  —0.691 (.255) — — —2.092
78 1 10 100163  9.9944 0449 1.538 079 — 1 0.185
93 2 20 10.0258 10.0139  .0533 1.000  .165 — 2 -0.917
94 2 20 10.0075 10.0000  .0376 0.890  .192 1 1 0.368
All 26 259 10.0111 10.0047  .0482 2,139 017 4(1) 17 1.197
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TABLE 2B
Remote, RT-BL
# # BL RT RT-BL RT-BL RT-BL # Series # Series
Opr. Series Pairs Mean Mean SD.Diff. tscore Prob. p<05 p<.5
10 6 61 10.0159 10.0171 .0546 0.180 .429 — 3
12 1 9 99956 10.0020 .0439 0.443 .335 — 1
16 7 70 10.0013 10.0047 .0526 0.539 296 1 3
41 1 10 10.0290 10.0150 .0491 —0.905 (.195) — —
49 3 30 10.0078 10.0076 .0564 —-0.021 (.492) 1 1
68 2 20 100100 9.9994 .0545 -0.867 (.199) — (1) 1
69 1 9 100488 10.0318 .0608 —0.834 (.214) — —
78 1 10 99797 10.0163 .0432 2.680 .013 1 i
93 2 20 10.0109 10.0258 .0488 1.367 .094 2
94 2 20 9.9984 10.0075 .0556 0.731 237 — 1
All 26 259 10.0084 10.0111 .0533 0.826 .205 3(1) 13
TABLE 2C
Remote, LT-BL
# # BT LT S.D.Diff. LT-BL LT-BL # Series # Series
Opr. Series Pairs Mean Mean LT-BL tscore Prob. p<.05 p<.5

10 6 61 10.0159 10.0126 .0501 —0.503 .309 — 3
12 1 9 9.9956 9.9808 .0420 —1.057 .161 — 1
16 7 70 10.0013  9.9981 0457 —0.597 276 1 4
41 1 10 10.0290 10.0126 0515 —-1.011 .169 — 1
49 3 30 10.0078 9.9934 .0491 —1.610 .059 — 3
68 2 20 10.0100 10.0108 .0468 0.084 (.467) — 1
69 1 9 10.0488 10.0429 .0395 ~0.446 334 — 1
78 1 10 99797 9.9944 0516 0.904 (.195) — —
93 2 20 10.0109 10.0139 .0385 0.351  (.365) — 1
94 2 20 9.9984 10.0000 .0405 0.177  (.431) — 1
All 26 259 10.0084 10.0047 .0462 —-1.278 .101 1 16
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TABLE 3A
Multipleoperators, RT-LT

# # RT LT RT-LT RT-LT RT-LT #Saies #Series t-score
Opr. Series Pairs Mean Mean S.D.Diff. t-score  Prob. p<.05 p<.5 Corr.

220 2 20 10.0133 10.0190 0446 -0.573  (.287) — 1 1115
244 1 10 10.0248 10.0170 .0483 0.511 311 — 1 —1.442
251 1 10 10.0187 10.0079 .0343 0.994 173 — 1 1.247
252 1 10 10.0168 10.0159 0455 0.066 474 — 1 —0.456
277 1 10 9.9923 10.0195 .0430 —2.001  (.038) — () — 0.091
284 2 20 10.0136 10.0041 0544 0.775 224 — 2 —0.401
299 1 10 10.0093 10.0106 0647 —0.064  (.475) — — -1.241
All 9 90 10.0128 10.0130 0486 —0.034  (.487) — (1) 6 —0.251
2 Operators remote, RT-LT
294 2 20 10.0006 10.0017 .0470 -0.098 (.462) - 1 -0.881
7 Operators, remote, RT-LT
750 1 10 10.0016 10.0001 0479 0.101  .461 — 1 -0.361
TABLE 3B
Multipleoperators, RT-BL
# # BL RT RT-BL RT-BL RT-BL # Series # Series

Opr. Series Pairs Mean Mean S.D.Diff. t-score Prob. p<.05 p<.§

220 2 20 10.0011 10.0133 .0366 1.483  .077 1 1
244 1 10 10.0114 10.0248 .0499 0.849  .209 — 1
251 1 10 10.0102 10.0187 .0619 0.434 337 — 1
252 1 10 10.0018 10.0168 .0501 0.947 .184 — 1
277 1 10 9.9785  9.9923 .0288 1.518 082 — 1
284 2 20 10.0129 10.0136 0515 0.057 478 — (1) 1
299 1 10  10.0099 10.0093 .0525 —0.036 (486) — —_
All 9 90 10.0044 10.0128 .0463 1.723 044 1(1) 6
2 Operators, remote, RT-BL
294 2 20 9.9958 10.0006 .0460 0.469  .322 — 2
7 Operators, remote, RT-BL
750 1 10 10.0246 10.0016 .0272 —-2.677 (.013) — (1) —_
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TABLE 3C
Multiple operators, RT-BL

# # BL LT LT-BL LT-BL LT-BL #Series #Series
Opr. Series Pars Mean Mean S.D.Diff. tscore Prob. p<.05 p<.5

220 2 20 10.0011 10.0190 .0421 1.896 (.037) — —
244 1 10 10.0114 10.0170 .0450 0.392 (.352) — —
251 1 10 10.0102 10.0079 0562 -0.129 450 — 1
252 1 10 10.0018 10.0159 .0678 0.656 (.264) — —
277 1 10 9.9785 10.0195 0394 3294 (005) —(1) —
284 2 20 10.0129 10.0041 .0468 —0.838  .206 — 1
299 1 10 10.0099 10.0106 .0569 0.040 (.485) — —
All 9 90 10.0044 10.0130 .0505 1.613 (055) —(1) 2

2 Operators remote, LT-BL

294 2 20 9.9958 10.0017 .0504 0.520  (.305) — —

7 Operators, remote, LT-BL

750 1 10  10.0246 10.0001 .0524 —1.480 .087 — 1




