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Sear ching for " Signatures' in Anomalous Human-Machine
Interaction Data: A Neural Network Approach*

DEAN |. RADIN'
Department of Psychology, Princeton University, Princeton, NJ 08544

Abstract—Anartificial neural network was used to explorewhether unique
""signatures’ could be found in data collected in experiments studying the
effect of intention on the statistical behavior of random number generators.
Resultsshowed that a network trained with a back-propagation technique
was able to learn to associate 32 different individuals with the data they
generated, then successfully transfer that knowledgeto new data. It isrec-
ommended that similar experimentsstudying anomal ous human-machine
interactions should attempt to identify person-specific patterns in data in
addition to measuring the magnitude of effects; parallel processinganalysis
techniques are a'so recommended.

Introduction

One of the most conspicuousand frustrating aspects of the study of human
behavior isthe fact that peoplearedifferent. Thisdistinctivenessallowsusto
identify people based on propertiessuch asfingerprints, handwriting, voice,
gait, DNA, personality, and so on (Weisburd, 1988). The importance of
individual differences has long been noted in psychological experiments
(Barlow & Hersen, 1984), thusit should not be surprisingto find that such
differenceshaveal so been reportedin parapsychol ogical experiments(Babu,
1987; Berger, 1988; Jahn & Dunne, 1986, 1987; Jahn, Dunne, & Nelson,
1987; McConnell, 1989). The present study investigated the hypothesis of
individual differences, called "'signatures,” in human-machine interaction
data collected by the Princeton Engineering Anomalies Research (PEAR)
laboratory (Nelson, Dunne, & Jahn, 1984, 1986).

In the PEAR studies, individualsattempted to influence the output sta-
tistics of electronic random number generators (RNG) solely via mental
intention. In atypical RNG experiment conducted at PEAR, an RNG issat
to produce a series of 200 truly random bitsat the press of a button; thisis
caled one trial. A person watchesa digital display that shows how many
times the random samples matched an alternating "'target" bit over the
course of 200 generated hits. By chance, one would expect an averageof 100
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such matches, and under control conditions the distribution of trial scores
closdly matches the theoretically expected binomial distribution (Nelson,
Dunne, & Jahn, 1986). When an individual is asked to aim for high num-
bers, he or she mentally tries to cause the RNG to produce trial scores
greater than 100. In a low aim condition, trial scores less than 100 are
intended; and in a control condition, no mental intention is applied. One
run consists of 50 aim high, 50 aim low, and 50 control trials. One series
consists of 50 such runs, which takes about five hours of data collection to
complete.

Aggregate experimental resultsto date reved statistically significant cor-
respondences between the intentional "am'" and the shift of the RNG
output statistics (Jahn & Dunne, 1986, 1987; Jahn, Dunne, & Nelson,
1987). Meta-analysis of over 600 similar RNG experiments conducted by
some 67 other investigatorsindicatesthat the anomal ous correlation is not
due to methodological shortcomingsor undetected artifactsin the PEAR
RNG (Radin & Nelson, 1987; Radin & Nelson, in press).

Oneintriguing observation about thisdata (beyond the mere existence of
an anomalous correlation) is that individuals seem to perform in consis-
tently unique patterns. Nelson, Dunne and Jahn (1986) report that data
produced in one run often bears resemblance to data produced in other
runs, and such similarities appear to be unique to the individuals who
produced the data. However, other than providing face validity based upon
graphica representation of the data (Jahn & Dunne, 1987), some rudimen-
tary statistical analyses (Babu, 1987), and corroborating observationsin
similar typesof experiments(Berger, 1988; McConnell, 1989), a'" signature™
effect has not been rigorously demonstrated. If such an effect were con-
firmed, it would suggest that experiments on human consciousness would
provide more useful and revealing information with single-subject designs
rather than conventional multisubject designs (cf. Barlow & Hersen, 1984).

To explorethe idea of person-specific signaturesin the PEAR RNG data,
| used a powerful computational techniquethat is provingto be exception-
aly adept at discoveringweak patternsin noisy data. Asdescribed below in
more detail, the general term for this approach is neural network analysis,
and the specific training procedure used in thisstudy is called back-propaga-
tion (Jones & Hoskins, 1987; Rumelhart, Hinton, & Williams, 1986). The
study involvedtraining a network to associategiven data with given individ-
uals, then observingwhether the trained network could successfully identify
persons based upon data that the network had not **seen™ before.

Neural Networks

New computational techniquesand models, varioudy called neural net-
works, parald distributed processing, connectionism, and so on, are at-
tracting wide interest within the disciplines of artificial intelligence, the
cognitive sciences, and the neurosciences. These models, anal ogousto bio-
logica neural networks, are rapidly advancing the theory and development
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of self-organizing, adaptive machines as wel as solving previously intract-
able problemsin artificial intelligence (Materna, 1987; Shriver, 1988).

Neural networks are a form of parallel processing based upon research
about how the brain encodesand processesinformation. The power of these
networksrests upon the finding that when numerous elementary processing
units are richly interconnected under the right conditions, they can auto-
matically learn to associate arbitrarily complex inputswith arbitrarily com-
plex outputs. Properly configured, these networkscan aso implement self-
organizing associative memories, automatically derive statistical descrip-
tions of spatial and spatiotemporal data, and autonomously acquire
knowledge by observation.

An essentia idea underlying neural networks may beillustrated by anal-
ogy with a bee hive. A hiveisa complex, dynamic community with intelli-
gent organizationand structure, created and supported by individually sm-
plecreatures. Instead of being controlled by acentral, guidingintelligence, a
hive seems to be maintained by the hundreds of thousands of interactions
among bees. For another analogy, consider the collections of elementary
cellsthat “cooperate” to form complex organic structures called organs.

In engineering terms, a neural network may be described as a "' parall€el
dynamic system with the topology of a directed graph [which] can carry out
information processing by means of its state response to continuous or
initial input™ (Materna, 1987). Information processinginvolvesinteractions
among large numbers of artificial neurons. These neurons, called nodes or
units, have four main components, asillustratedin Figure 1:

input connections, through which the unit receives activation from other units, a
summation function that combines variousinput activations into asingle activa-

tion, an

Input
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Fig. 1. Exampleof atypical nodein asimulated neural network. A node may havean arbitrary
number of input connections, and any number of output connections (only oneoutput is
shown).
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output function that converts summation of input activation into output activa
tion, and

output connectionsby which a unit's output activation arrives as input activation
at other unitsin the system (Jones & Hoskins, 1987).

Such networks have been successfully taught to automatically recognize
human faces, read text, make medical diagnoses, bal ance objects, and so on,
without conventiona agorithmic programming (Materna, 1987; Shriver,
1988; Widrow & Winter, 1988). Becausea more completedescription of the
technigues and applicationsof neural networksis beyond the scope of this
paper, | will proceed by concentrating on the present implementation.'

Method

The Data

Data used in this study were originally collected at the PEAR laboratory
as part of their research on human-machine interactionswith truly random
event generators® The dataset consists of 87 series of data (*'series” asde-
fined above), produced by 33 different individuals over approximately a
nine-year period. The data are in the form of run scores (average scores
obtained over 50 successivetrials). A typical seriesisrepresentedin theform
of 150 lines of data (one run score per line, and one set of 50 linesfor each of
the tripolar intentions).

Other types of information were available from computer archive files,
including such items as whether the run wasin " volitiona" or "instructed"
mode, whether the RNG was in an " automatic' or "manual'* condition,
and 0 on (Nelson, Dunne, & Jahn, 1984), but only run scores, intentional
aim direction, and operator identity numbers were used in the present
anaysis.

Data Preparation

| chosea straightforwardmethod of presentingdatato a network, onethat
required only six numbersto characterizean individual's performance over
one series. Thishad the advantageof simplicity, which wasdesirablein this
exploratory study, but the disadvantageof compressing nearly a million bits
of temporally collected data per person into only a few static summary
gtatigtics.

Because the main purpose of this study was to see whether a network
could learn to identify an operator based solely upon his or her data, |
actually needed two datasets associated with each operator—onewould be
used to train the network and the other would be used to see whether the
trained network could transfer its knowledge to new data. Thus, each series
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(atota of 50 runs) wassplitin haf, usingthefirst haf (25 runsin each of the
threeaim conditions) asthe training set and the second haf (25 runs) asthe
trander set. This half-split method was used, rather than creating training
and transfer setsout of separateseries, partialy becauseonly 20 individuals
had produced two or more series, but more importantly, because | specu-
lated that consistent human performance would be more evident within a
given series rather than between different series.?

Individual run scores were transformed into standard normal deviates
against chance expectation (i.e., Z scores), then for each seriesthe following
six data items were generated to produce the training set: (1) an overall
(Stouffer) Z score for the first 25 runs under high aim intention, (2) the
average Z? of those 25 high aim runs,* (3) a Stouffer Z for the first 25 runs
under low aim intention, (4) the average Z? of those 25 runs, (5) the Stouffer
Z for thefirgt 25 control intention runs, and (6) the average Z? of thoseruns.
For the transfer set, the same sx data items were determined, except using
data for runs 26-50.

This procedure produced 87 itemsin the training set and 87 itemsin the
transfer set, representing data for 33 operators. To further simplify the
interpretation of the training-transfer test, | used only an operator's first
series, and only the first 32 operators (for reasons described below). This
resulted in two datasets, each consisting of 32 lines of data.

Control Datasets

If the transfer test showed that say, 50% of the operators were correctly
identified, the ""signatures’™ results would be self-evident. But, if say, only
2-3% were identified, as expected given the very small magnitude effects
reported by the PEAR lab, then a gtatistical assessment would be necessary.
Therefore, two control datasets were generated to compare against the
transfer test results. First, a random dataset was generated by simulating the
PEAR experimental protocol with a pseudorandom number generator
(PRNG). The random dataset was created in five steps: (a) the PRNG was
used to generate onetrial of 200 random bits, (b) thiswas repeated 50 times
to generate one run, (c) a Z scorewasdetermined from thisrun, (d) thiswas
repeated 25 times to simulate a half-series, and (€) steps a-d were repeated
32 timesto simulate the 32 series used from the PEAR dataset.

Then a scrambled dataset was generated by using the original data, but
with operator numbers chosen uniformly at random, with replacement,
over the range 1-32. Note that | could not create a suitable scrambled
dataset by simply shifting operator codeshy one, becausethiswould guaran-
teethat at least half of the operatorswould beidentified in that ** scrambled*
data.> The UNIX System V™ 48-bit multiplicative congruential PRNG,
caled drand48, was used to provide pseudorandom numbersin the control
study. Thisgenerator has passed extensivefirst-order and higher-order ran-
domnesstests (Radin, 1985; Roberts, 1982).
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Description of Network

The program used to implement the network was originally written in
Fortran, later recoded into C, then adapted and revised by theauthor for the
present application.® A Silicon GraphicsIRIS4D™ workstation was used to
run the program.

The network used for this study was based upon a three-layer model—
input, hidden, and output—asillustrated in Figure 2. There were Six input
nodes, correspondingto the above sx vauesassociated with each operator;
between 10 and 30 " hidden" nodes (so-called because they are not directly
accessible to the outside world), depending on factors such as how fast the
network wasto learn, how complex theinputswere, and so on; and 5 output
nodes, encoding 32 operator identitiesas binary codes.

For the present study, values applied to the six input nodes consisted of
the Stouffer Z scoresand average Z?2 associated with each operator'sdata, as
mentioned above. The desired network output was the unique binary code
associated with each operator. Asiscustomary in such networks, the inter-
connecting links between the input and hidden, and hidden and output
nodeswereinitially set to random values (typically usinga uniform random
range between £ 1.0).

Paralld Processingin the Network

The following eventsoccur in one simulated parallel processing cycle: (a)
The firgt line of the 32 line training dataset is read by the program, which
applies the six data vaues for the first operator to the input nodes. These

output nodes

hidden nodes
5000000

200000
input nodes

Fig. 2. Structure of the neural network used in this study. Linksfrom the firg input to firg
hidden node, and firg hidden to output node are shown to illustrate the connectivity of
the network. The actual network was fully inter connected between input and hidden,
and hidden and output layers. Herewe see 12 hidden nodes; the networ kstested used 10,
16, and 30 nodes.

s
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values cause the input nodes to spread activation out along their links
towardsthe hidden layer in proportion to each link’s strength or weight. (b)
The hidden nodes sum the activation received from the input nodes, de-
pending on the value of the connecting links, then, in accordance with an
activation function they send activation towardsthe output nodes. (¢) The
output nodes sum the activation sent from the hidden nodes, ending the
"feed-forward™ phase of thiscycle.

Now a"'teacher signal'* comesinto play: (d) An arbitrary but unique 5-bit
code (e.g., “00111” identifiesoperator number 7) associated with the input
dataiscompared against theactual continuous-valued resultsresidingat the
output nodes, generated from step (c). (e) The difference between the ob-
served activation from (c) and the desired *"signd** from (d) is now propa-
gated backwards through the network, changing the values of the intercon-
nectinglinks so asto minimizethat error on the next passif the sameinput
values were applied (thusthe name of the learning rule, back propagation,
see the Appendix for the basic equations).” This ends one parallel proces-
sing cycle.

Now, (f) the same processisapplied for the remaining 31 operators data:
First a feed-forward phase, followed by back propagation of the error. Ap-
plying these 32 lines of input to the network is caled one pass. With the
present network and form of the data, it typically takes between 1,000 to
3,000 such passesto train the network to perfectly associate the observed
data with the desired operator codes. (Some readers may find it surprising
that a network can learn to perfectly associate random-looking input data
with arbitrary output codes; thisisone of the interesting propertiesof train-
able neural networks.)

It is important to note that an untrained network aways starts with
random interconnection weights between nodes. The hidden nodesact asa
kind of mathematical spacein whichto compute the problem of associating
inputs with outputs, thus if we begin with say, 20 hidden nodes, we have a
topological flexibility roughly equivalent to a 20-dimensional space. Witha
spacethislarge, there are a vast number of "' solutions™ to the problem, and
itislikely that a new solutionwill be found each time the network istrained
from scratch. In other words, training the network once will not guarantee
the "best™ solution, only an acceptable solution (i.e., the network does not
know that we want to transfer its knowledgeto other data; it just solvesthe
association problem). Because | wasinterested in exploring the possibility of
knowledge transfer, the process described above in steps (a)-(f) was per-
formed repeatedly, forminga distribution of transfer resultsagainst which to
compare the random and scrambled dataset results.

Transfer Test

The transfer test consisted of 5 steps:
(&) The network wastrained (from arandom starting state) on the 32-line
data file until the error between input and output values was less than 0.05
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per output node at the end of a pass. From experience thiswas determined
to take between 1,000 and 3,000 passes.

(b) Thetrained network wastested against the transfer dataset by sending
each of the 32 itemsin the transfer dataset through the net in one feed-for-
ward pass, then comparing the values obtained at the output nodesagainst
the desired values. The observed value at an output node was considered to
be0 if the activation waslessthan 0.5, otherwiseit wasconsideredto bea 1.2
The number of correct bit-matcheswasthen used asa measure of successfor
the transfer test. For example, if dl 5 bitsof an operator code number were
identified correctly after passing that operator's data through the network,
the data-operator relationship learned by the network during the training
phase would have transferred perfectly (in informational terms, we could
think of the transfer test as having ' transmitted™ 5 bitsof information). If 4
bitswere correctly identified, thiswould constitute an 80%match (transmit-
ted 4 bits of information), and so on.

(c) The same process was conducted for the random dataset and the
scrambled dataset, producing for each of the three tests the number of
perfectly correct matches (5/5 bits correct) out of 32 operators, 4 out of 5
correct matches (out of 32 operators), and 3 out of 5 (out of 32 operators).
Thus, the scorefor a perfect transfer test would be 32 (all operators correctly
identified with 5 out of 5 bits correct).

(d) Stepsa—c were repeated 100 or more timesto form a distribution of
resultsfor the transfer, random, and scrambled tests.

(e) The meansof the distributions obtained in stepd were compared with
at-test.” The null hypothesisis that there are no consistent patterns within
thedata, so thereisnothingthat can betransferred, and thus there should be
no differencesamong the transfer, random, and scrambl ed dataset distribu-
tion means. The alternative hypothesisisthat thereis something consistent
in the data that is associated with each operator; that these associationscan
belearned; and that these can be detected in independent data produced by
those same operators. These effects would manifest in the present case by
shifting the transfer distribution mean positive with respect to the random
and scrambled distribution means, and the random and scrambled means
should not differ significantly from one another. Thus, three t-tests were
planned in advance: Transfer vs. Random, (TR) Transfer vs. Scrambled
(TS), and Random vs. Scrambled (RS).

Results

In considering the results, it is important to note that the values at the
output nodes of these networks resemble Bernoulli trialswith p = 0.5. For
example, we would expect to find approximately one operator correctly
identified by chance (say, one ""hit"") out of 32, or approximately 5 hitsout
of 32 where4 out of 5 bitswere correctly identified, and so on. Actually, the
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chance expected value at the (binary transformed) output nodes aso de-
pendson theinitial interconnection weightsin the network, on the form of
the activation and learning rules, and on the input values. With these ca-
veatsin mind, by rough approximation we would expect to see about one
operator completely identified by chance(i.e., al five code bitscorrect), and
one completely missed (i.e., all five bits missed).

Table 1 showsresults of tests using three network configurations. Each of
the simulations took about 6 hours to completeon a Silicon GraphicsIRIS
4-D workstation.!

Discussion

If the signatures hypothesis is true, it would manifest in this study by
making the number of correctly identified operators greater in the transfer
condition than in either the random or scrambled conditions. We would
expect to find significant differences between the transfer vs. random and
transfer vs. scrambled conditions, and a nonsignificant difference for the
random vs scrambled condition. This is what the results show (Table 1).
The two histogramsin Figure 3 display the distributions for the ““4/5 bits
identified™ results.

Another way of illustrating transfer in this study is by examining the
difference between means of perfectly identified (5/5 bits) and perfectly
unidentified (0/5 bits) operators for each of the three conditions. Under the
signatures hypothesis, we would expect to find more cases of 5/5 code bits
identified than 0/5 code bitsidentified in the transfer condition, but not in
the random or scrambled conditions. Becausethe 5/5 and 0/5 meanswithin
the three conditionsare not fully independent, the statisticsshownin Table
2 are based on t-tests for differences between correlated pairs of means.
Figure 4 shows the separation between the distributions for the training-
transfer test.

Given these results, one may wonder —under the assumption that
within-person performance is reasonably consistent—whether repeatedly
presenting a network with multiple examples of the same operator's data

! (i.e., from different experiments) would improve the transfer rate. Table 3
showstest resultsfor correctly identified operators(5/5 code bitscorrect) in
a 20 hidden node network trained on threeindependent datasets for each of
nine people. (Nine persons in the PEAR database had completed three
separate series))

Comparing resultsin Table 3 with those in Table 1 suggeststhat there
may be an advantagein presenting networks with repeated, independent
views of the same operators data. More research is needed to determine
waysof training networksto recognizethisdata, aswell asto select optimum
statistical parametersto use as inputs. In addition, even though the trans-
ferred information in the present study was statistically significant, the ab-




194 D. I. Radin

TABLE1
Means, standard deviations, and t-testsfor transfer, random, and scrambled tests, using
actual and random training-transfer data; al resultsare based
upon N = 100 training-transfer repetitions

10 Hidden Nodes®

Bit matches(#/5) 0 1 2 3 4 5
Transfer
Mean 0.61 3.96 9.07 10.88 6.02° 1.46¢
SD 0.69 1.78 2.49 2.68 2.12 1.13
Random
Mean 1.13 5.38 10.17 9.39 491 1.02
SD 1.00 1.97 2.53 2.60 2.11 0.91
Scrambled
Mean 0.93 491 10.20 10.02 5.04 0.90
SD 0.96 2.22 2.34 2.65 1.88 0.81
16 Hidden Nodes
Bit matches(#/5) 0 1 2 3 4 5
Transfer
Mean 0.74 3.79 8.86 11.28 6.19 1.14
SD 0.74 1.51 2.40 2.52 1.91 0.92
Random
Mean 0.95 4.86 10.08 10.20 5.03 0.88
SD 1.01 2.29 248 2.81 2.09 0.90
Scrambled
Mean 1.12 4.88 9.76 10.17 5.05 1.02
SD 1.05 2.03 2.66 2.45 2.04 0.96
30 Hidden Nodes"
Bit matches(#/5) 0 1 2 3 4 5
Transfer
Mean 0.94 3.52 8.28 11.62 6.52 1.12
SD 0.82 1.62 2.27 2.54 1.70 1.00
Random
Mean 0.87 5.01 10.10 10.23 4.78 1.01
SD 0.92 1.87 2.61 2.98 2.05 1.02
Scrambled
Mean 0.98 5.07 9.96 10.07 4.89 1.03
SD 0.94 2.21 2.58 2.63 2.37 1.06
t-tests
10 Hidden nodes
t(T-R)* —4.26 -5.32 -3.08 3.97 3.69 3.02
(T-S) -2.69 —3.32 -3.29 2.27 3.44 4.01
t(R-9) 1.44 1.58 -0.09 -1.69 ~-0.46 0.98
16 Hidden nodes
t(T-R) -1.67 -3.88 -3.52 2.85 4.08 2.01
(T-S) -2.94 —4.29 —2.50 3.14 4.06 0.90
H(R-S) -1.16 -0.07 0.88 0.08 -0.07 ~1.06
30 Hidden nodes
t(T-R) 0.57 -5.99 -5.24 353 6.50 0.77
t(T-9) -0.32 —5.63 —4.86 4.22 5.56 0.61
t(R-S) —-0.83 -0.21 0.38 0.40 —0.35 -0.14
2 Trained 4,000 passes.
® The network identified 4 out of 5 operator code bitsfor an averageof 6.02 operators out of
32
¢ The network identifiedall 5 operator code bitsfor an average of 1.46 operatorsout of 32.
4 Trained 2,000
¢ All t-testsfor differences between independent means, 198 degreesof freedom. Significant
results, one-tailed, are highlighted in bold for emphasis.
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Fig. 3. Histogramfor the number of timesthat four out of five operator code bitswerecorrectly
identified,out of atotal of 32 operators, usinga 10 hidden node network. T4 refersto the
training-transfertest and R4 refersto the training-random test. Thus, in 100independent
repetitionsof the training-transfer test, the mean number of operatorsin which 80% of
the operator code was correctly identified was6.02, whereas the equivalent mean in the
random test was 4.9 1. Compare these figureswith 5.0, which isthe number expected by
chance assuming that the output nodesare Bernoulli trialswith p(hit) = .5.

solute magnitude was miniscule. Obvioudly, if the origina “signal” (i.e.,
influence on an RNG output) were more robust, then the neural network
would be more likely to recognize a potential signature. Thus, research is
also needed on ways of statistically increasingthe magnitude of theseanom-
alousinfluences.

Conduson

This study suggests that a neural network may learn to associate data
produced by a random number generator with the identity of individuals
who attempted to " mentally influence’ the output statisticsof the genera-
tor. Results of testswith different network configurationssuggest that it may

TABLE 2
Paired t-tests (99 df) for differences between correlated means, for 5 vs 0 correctly identified
operator code hits, in the training-transfer (T), training-random (R), and training-scrambled
(S) conditions; significant resultsare highlighted in bold

Paired t-tests
Hidden Nodes T5TO R5-RO S5-S0
10 6.06 —0.75 —0.24
16 3.17 —0.51 —0.64
30 1.35 1.03 0.35
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Fig. 4. Histogram for five and zero operator code bits correctly identified, out of a possible 32
operators, for the training-transfer (TO & T5) condition, using a 10 hidden node net-
work. In other words, in 100 training-transfer test repetitions, the mean number of times
that zero operator code bitswereidentified was 0.61, whereasthe mean number of times
that al five operator code bits were identified was 1.4. Resultsshown in Table 2 show
that this separation is seen only in the transfer datasets, and not in the random or
scrambled datasets.

be possible to develop experimental protocols that are better suited for
network analysisthan protocols currently used to generate data in typical
random event generator experiments.

For example, consider an experiment requiringan operator to attempt to
simultaneously influence multiple RNGs. The multiple, parallel outputs of

TABLE 3
Means, standard deviations, and t-testsfor transfer, random, and scrambled distributions;
N = 50 training-transfer repetitions of a 20 hidden node network, trained for 2,000 passes,
this network was presented with data from three independent seriesfor each of nine
operators, for atotal of 27 linesof input;'* significant tests are emphasizedin bold

5/5 Correct Matches

Transfer
Mean 2.42
SD 1.09
Random
Mean
SD
Scrambled
Mean 1.64
SD 1.12
t(T-R) 7.62
t(T-9) 5.13

t(R-S) —2.56
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the RNGs would be fed into a network for anaysis. With this form of
paralld data, plusadditional parameters such asdirection of intention (e.g.,
high aim or low aim), feedback presentation style, age, gender, environmen-
tal variables, and so on, a network may be ableto learn to associate operator
identity with hisor her data at a transfer rate approaching practical utility.
Trial-by-trial parallel feedback displayed to operators could be more inter-
esting than the typical display of numbers of hits, or linear graphs, and
instead provide graphical representations of multidimensional phase rela-
tionshipsamong the outputs of the RNGs.

Such displays would have the advantage of conveying more information
to operators at a single glance, would alow more interesting forms of feed-
back (e.g., dynamically shifting coherent vs. chaotic shapesand colors), and
would allow experimental protocolsin which shift of atheoretical mean of a
distribution would be secondary as compared to the relationshipsof means
of independent binomial distributions. It may be that phase relationships
are"eader to influence than mean shifts because changesin phasedo not
require pushing a device against its normal operating probabilities, that is,
different phase relationships among the outputs of independent random
generators can be achieved without shifting the individual distribution
means beyond chance expectation.

Endnotes

! For an introduction to the capabilitiesand theories of neural networks, see the special issue
of IEEE Computer, 21, 1988.

2| am indebted to Robert Jahn, Roger Nelson, and Brenda Dunnefor providing acopy of this
dataset, which wasretrieved from computer tape archives maintained by the PEAR laboratory.

3 Note that under the null hypothesis, it should not matter when or by whom the data was
collected, so the present method would offer no advantage in identifying "' signatures.”

4 In other words, V = (2 Z*/N), where N = 25.

51 will alow the interested reader to figure out why thisis so, with the hint that successive
operator codes in the training set are sequential binary numbers.

¢ The program allowsawidevariety of parametersto beset, including variablesrelated to how
fast the network learns, how many nodesthere are, the rangefor initial random weightsused to
interconnect the nodes, and so on. | am indebted to Stephen Hanson and Robert Masterson for
their gracious assistance with this software. See the Appendix for the activation and learning
rule equations.

7 The back-propagation method used hereisan extension of thewell-knowngeneralized delta
rule (Rumelhart, Hinton, & Williams, 1986), alowing the use of non-euclidian error signals.
Hanson & Burr (1987) have shown that this method is particularly effective with noisy data.
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& In this network, output activation level swerecontinuous-valued numbersbetween 0 and 1.

? The variance in the transfer dataset comes from the randomness in the neural network's
initial state, whereasthe variancein the random and scrambled datasets comefrom two sources:
randomness in the network and randomness in the pseudorandomly generated data. Thus, in
statistical terms, the t-test isconditional on the transfer dataset.

10 This computer runsat about 12.5 million instructions per second (MIPS), which suggests
why neural network analyses have only recently become practical.

"It should be noted that the number of training passes, hidden nodes, training-transfer
repetitions, and so on, were chosen by experience with these networks rather than by algorith-
micor formal criteria. Thisisbecausethestate-of-the-art of neural networks remainsmoreof an
art than a science.
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Appendix

Thissemilinear function used to calculate activation in the forward passis
from Rumelhart, Hinton and Williams (1986, p. 329):

1
Oy = 1 + e T’

where

oisthe output activation,

pisapointer referring to the hidden or output layer of nodes,

w are the interconnection weightsfrom input to hidden, or hidden to output
nodes,

i rangesover the number of input or hidden nodes, and

j rangesover the number of hidden or output nodes.

For the backwards pass, the back-propagation error (A) is computed for
output nodesas
Aj = SGNll] - 0j|(ril)*0j*(l - Oj)a
where
SGN isthedgn of (¢4; — o),
t isthe teacher signal (thedesired output),
oisthe observed activation level at the output node,
and r isareal number (chosen asr = 3for al network simulations reported
here).
Now A for hidden nodesiscalculated as:

Nout
A, = Z Ak*WUk)*hj*(l — h,),
k=1
where

Nout isthe number of output nodes,

A, is the activation on an output node,

wisthe interconnection weights between hidden and output nodes, and
histhe activation on hidden node j.

We then modify the weightsin the network according to the rules:
Aji(t + 1) = a* Aji(f) + ex Aj*activation;,
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and

Wi = Wi + Ay,
where

« controls the " inertid"* of learning in the network,
e controls how fast the network learns,

t isthe time or processing cycle number, and
activation; isthe amount of activation on nodei.

Note that weightsare updated after each presentation of an input/output
pair, and the amount of change depends on how much the weights were
changed on the previous cycle (and the value of a).




