
Journal of Scientific Exploration, Vol. 3, No. 2, pp. 185-200, 1989 
Pergamon Press plc. Printed in the USA. 

0892-33 10189 $3.00+.00 
01989 Society for Scientific Exploration 

Searching for "Signatures" in Anomalous Human-Machine 
Interaction Data: A Neural Network Approach* 

DEAN I .  RADIN~ 

Department of Psychology, Princeton University, Princeton, NJ 08.544 

Abstract-An artificial neural network was used to explore whether unique 
"signatures" could be found in data collected in experiments studying the 
effect of intention on the statistical behavior of random number generators. 
Results showed that a network trained with a back-propagation technique 
was able to learn to associate 32 different individuals with the data they 
generated, then successfully transfer that knowledge to new data. It is rec- 
ommended that similar experiments studying anomalous human-machine 
interactions should attempt to identify person-specific patterns in data in 
addition to measuring the magnitude of effects; parallel processing analysis 
techniques are also recommended. 

Introduction 

One of the most conspicuous and frustrating aspects of the study of human 
behavior is the fact that people are different. This distinctiveness allows us to 
identify people based on properties such as fingerprints, handwriting, voice, 
gait, DNA, personality, and so on (Weisburd, 1988). The importance of 
individual differences has long been noted in psychological experiments 
(Barlow & Hersen, 1984), thus it should not be surprising to find that such 
differences have also been reported in parapsychological experiments (Babu, 
1987; Berger, 1988; Jahn & Dunne, 1986, 1987; Jahn, Dunne, & Nelson, 
1987; McConnell, 1989). The present study investigated the hypothesis of 
individual differences, called "signatures," in human-machine interaction 
data collected by the Princeton Engineering Anomalies Research (PEAR) 
laboratory (Nelson, Dunne, & Jahn, 1984, 1986). 

In the PEAR studies, individuals attempted to influence the output sta- 
tistics of electronic random number generators (RNG) solely via mental 
intention. In a typical RNG experiment conducted at PEAR, an RNG is set 
to produce a series of 200 truly random bits at the press of a button; this is 
called one trial. A person watches a digital display that shows how many 
times the random samples matched an alternating "target" bit over the 
course of 200 generated bits. By chance, one would expect an average of 100 
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such matches, and under control conditions the distribution of trial scores 
closely matches the theoretically expected binomial distribution (Nelson, 
Dunne, & Jahn, 1986). When an individual is asked to aim for high num- 
bers, he or she mentally tries to cause the RNG to produce trial scores 
greater than 100. In a low aim condition, trial scores less than 100 are 
intended; and in a control condition, no mental intention is applied. One 
run consists of 50 aim high, 50 aim low, and 50 control trials. One series 
consists of 50 such runs, which takes about five hours of data collection to 
complete. 

Aggregate experimental results to date reveal statistically significant cor- 
respondences between the intentional "aim" and the shift of the RNG 
output statistics (Jahn & Dunne, 1986, 1987; Jahn, Dunne, & Nelson, 
1987). Meta-analysis of over 600 similar RNG experiments conducted by 
some 67 other investigators indicates that the anomalous correlation is not 
due to methodological shortcomings or undetected artifacts in the PEAR 
RNG (Radin & Nelson, 1987; Radin & Nelson, in press). 

One intriguing observation about this data (beyond the mere existence of 
an anomalous correlation) is that individuals seem to perform in consis- 
tently unique patterns. Nelson, Dunne and Jahn (1986) report that data 
produced in one run often bears resemblance to data produced in other 
runs, and such similarities appear to be unique to the individuals who 
produced the data. However, other than providing face validity based upon 
graphical representation of the data (Jahn & Dunne, 1987), some rudimen- 
tary statistical analyses (Babu, 1987), and corroborating observations in 
similar types of experiments (Berger, 1988; McConnell, 1989), a "signature" 
effect has not been rigorously demonstrated. If such an effect were con- 
firmed, it would suggest that experiments on human consciousness would 
provide more useful and revealing information with single-subject designs 
rather than conventional multisubject designs (cf. Barlow & Hersen, 1984). 

To explore the idea of person-specific signatures in the PEAR RNG data, 
I used a powerful computational technique that is proving to be exception- 
ally adept at discovering weak patterns in noisy data. As described below in 
more detail, the general term for this approach is neural network analysis, 
and the specific training procedure used in this study is called back-propaga- 
tion (Jones & Hoskins, 1987; Rumelhart, Hinton, & Williams, 1986). The 
study involved training a network to associate given data with given individ- 
uals, then observing whether the trained network could successfully identify 
persons based upon data that the network had not "seen" before. 

Neural Net works 

New computational techniques and models, variously called neural net- 
works, parallel distributed processing, connectionism, and so on, are at- 
tracting wide interest within the disciplines of artificial intelligence, the 
cognitive sciences, and the neurosciences. These models, analogous to bio- 
logical neural networks, are rapidly advancing the theory and development 
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of self-organizing, adaptive machines as well as solving previously intract- 
able problems in artificial intelligence (Materna, 1987; Shriver, 1988). 

Neural networks are a form of parallel processing based upon research 
about how the brain encodes and processes information. The power of these 
networks rests upon the finding that when numerous elementary processing 
units are richly interconnected under the right conditions, they can auto- 
matically learn to associate arbitrarily complex inputs with arbitrarily com- 
plex outputs. Properly configured, these networks can also implement self- 
organizing associative memories, automatically derive statistical descrip- 
tions of spatial and spatiotemporal data, and autonomously acquire 
knowledge by observation. 

An essential idea underlying neural networks may be illustrated by anal- 
ogy with a bee hive. A hive is a complex, dynamic community with intelli- 
gent organization and structure, created and supported by individually sim- 
ple creatures. Instead of being controlled by a central, guiding intelligence, a 
hive seems to be maintained by the hundreds of thousands of interactions 
among bees. For another analogy, consider the collections of elementary 1 cells that l l ~ o ~ p e r a t ~ "  to form complex organic structures called organs. 

In engineering terms, a neural network may be described as a "parallel 
dynamic system with the topology of a directed graph [which] can carry out 
information processing by means of its state response to continuous or 
initial input" (Materna, 1987). Information processing involves interactions 
among large numbers of artificial neurons. These neurons, called nodes or 
units, have four main components, as illustrated in Figure 1 : 

~ input connections, through which the unit receives activation from other units, a 
summation function that combines various input activations into a single activa- 

I tion, an 

Output 

Fig. 1. Example of a typical node in a simulated neural network. A node may have an arbitrary 
number of input connections, and any number of output connections (only one output is 
shown). 
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output function that converts summation of input activation into output activa- 
tion, and 

output connections b y  which a unit's output activation arrives as input activation 
at other units in the system (Jones & Hoskins, 1987). 

Such networks have been successfully taught to automatically recognize 
human faces, read text, make medical diagnoses, balance objects, and so on, 
without conventional algorithmic programming (Materna, 1987; Shriver, 
1988; Widrotv & Winter, 1988). Because a more complete description of the 
techniques and applications of neural networks is beyond the scope of this 
paper, I will proceed by concentrating on the present implementation.' 

Method 

The Data 

Data used in this study were originally collected at the PEAR laboratory 
as part of their research on human-machine interactions with truly random 
event generators2 The dataset consists of 87 series of data ("series" as de- 
fined above), produced by 33 different individuals over approximately a 
nine-year period. The data are in the form of run scores (average scores 
obtained over 50 successive trials). A typical series is represented in the form 
of 150 lines of data (one run score per line, and one set of 50 lines for each of 
the tripolar intentions). 

Other types of information were available from computer archive files, 
including such items as whether the run was in "volitional" or "instructed" 
mode, whether the RNG was in an "automatic" or "manual" condition, 
and so on (Nelson, Dunne, & Jahn, 1984), but only run scores, intentional 
aim direction, and operator identity numbers were used in the present 
analysis. 

Data Preparation 

I chose a straightforward method of presenting data to a network, one that 
required only six numbers to characterize an individual's performance over 
one series. This had the advantage of simplicity, which was desirable in this 
exploratory study, but the disadvantage of compressing nearly a million bits 
of temporally collected data per person into only a few static summary 
statistics. 

Because the main purpose of this study was to see whether a network 
could learn to identify an operator based solely upon his or her data, I 
actually needed two datasets associated with each operator-one would be 
used to train the network and the other would be used to see whether the 
trained network could transfer its knowledge to new data. Thus, each series 
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(a total of 50 runs) was split in half, using the first half (25 runs in each of the 
three aim conditions) as the training set and the second half (25 runs) as the 
transfer set. This half-split method was used, rather than creating training 
and transfer sets out of separate series, partially because only 20 individuals 
had produced two or more series, but more importantly, because I specu- 
lated that consistent human performance would be more evident within a 
given series rather than between different series.3 

Individual run scores were transformed into standard normal deviates 
against chance expectation (i.e., Z scores), then for each series the following 
six data items were generated to produce the training set: (1) an overall 
(Stouffer) Z score for the first 25 runs under high aim intention, (2) the 
average Z2 of those 25 high aim runs,4 (3) a Stouffer Z for the first 25 runs 
under low aim intention, (4) the average z2 of those 25 runs, (5) the Stouffer 
Z for the first 25 control intention runs, and (6) the average Z2 of those runs. 
For the transfer set, the same six data items were determined, except using 
data for runs 26-50. 

This procedure produced 87 items in the training set and 87 items in the 
transfer set, representing data for 33 operators. To further simplify the 
interpretation of the training-transfer test, I used only an operator's first 
series, and only the first 32 operators (for reasons described below). This 
resulted in two datasets, each consisting of 32 lines of data. 

Control Datasets 

If the transfer test showed that say, 50% of the operators were correctly 
identified, the "signatures" results would be self-evident. But, if say, only 
2-3% were identified, as expected given the very small magnitude effects 
reported by the PEAR lab, then a statistical assessment would be necessary. 
Therefore, two control datasets were generated to compare against the 
transfer test results. First, a random dataset was generated by simulating the 
PEAR experimental protocol with a pseudorandom number generator 
(PRNG). The random dataset was created in five steps: (a) the PRNG was 
used to generate one trial of 200 random bits, (b) this was repeated 50 times 
to generate one run, (c) a Z score was determined from this run, (d) this was 
repeated 25 times to simulate a half-series, and (e) steps a-d were repeated 
32 times to simulate the 32 series used from the PEAR dataset. 

Then a scrambled dataset was generated by using the original data, but 
with operator numbers chosen uniformly at random, with replacement, 
over the range 1-32. Note that I could not create a suitable scrambled 
dataset by simply shifting operator codes by one, because this would guaran- 
tee that at least half of the operators would be identified in that "scrambled" 
data.5 The UNIX System VTM 48-bit multiplicative congruential PRNG, 
called drand48, was used to provide pseudorandom numbers in the control 
study. This generator has passed extensive first-order and higher-order ran- 
domness tests (Radin, 1985; Roberts, 1982). 
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Description of Net work 

The program used to implement the network was originally written in 
Fortran, later recoded into C, then adapted and revised by the author for the 
present appli~ation.~ A Silicon Graphics IRIS 4DTM workstation was used to 
run the program. 

The network used for this study was based upon a three-layer model- 
input, hidden, and output-as illustrated in Figure 2. There were six input 
nodes, corresponding to the above six values associated with each operator; 
between 10 and 30 "hidden" nodes (so-called because they are not directly 
accessible to the outside world), depending on factors such as how fast the 
network was to learn, how complex the inputs were, and so on; and 5 output 
nodes, encoding 32 operator identities as binary codes. 

For the present study, values applied to the six input nodes consisted of 
the Stouffer Z scores and average Z 2  associated with each operator's data, as 
mentioned above. The desired network output was the unique binary code 
associated with each operator. As is customary in such networks, the inter- 
connecting links between the input and hidden, and hidden and output 
nodes were initially set to random values (typically using a uniform random 
range between f 1.0). 

Parallel Processing in the Net work 
The following events occur in one simulated parallel processing cycle: (a) 

The first line of the 32 line training dataset is read by the program, which 
applies the six data values for the first operator to the input nodes. These 

output nodes 

input nodes 

Fig. 2. Structure of the neural network used in this study. Links from the first input to first 
hidden node, and first hidden to output node are shown to illustrate the connectivity of 
the network. The actual network was fully interconnected between input and hidden, 
and hidden and output layers. Here we see 12 hidden nodes; the networks tested used 10, 
16, and 30 nodes. 
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values cause the input nodes to spread activation out along their links 
towards the hidden layer in proportion to each link's strength or weight. (b) 
The hidden nodes sum the activation received from the input nodes, de- 
pending on the value of the connecting links, then, in accordance with an 
activation function they send activation towards the output nodes. (c) The 
output nodes sum the activation sent from the hidden nodes, ending the 
"feed-forward" phase of this cycle. 

Now a "teacher signal" comes into play: (d) An arbitrary but unique 5-bit 
code (e.g., "001 1 1" identifies operator number 7) associated with the input 
data is compared against the actual continuous-valued results residing at the 
output nodes, generated from step (c). (e) The difference between the ob- 
served activation from (c) and the desired "signal" from (d) is now propa- 
gated backwards through the network, changing the values of the intercon- 
necting links so as to minimize that error on the next pass if the same input 
values were applied (thus the name of the learning rule, back propagation, 
see the Appendix for the basic  equation^).^ This ends one parallel proces- 
sing cycle. 

Now, (f) the same process is applied for the remaining 3 1 operators' data: 
First a feed-forward phase, followed by back propagation of the error. Ap- 
plying these 32 lines of input to the network is called one pass. With the 
present network and form of the data, it typically takes between 1,000 to 
3,000 such passes to train the network to perfectly associate the observed 
data with the desired operator codes. (Some readers may find it surprising 
that a network can learn to perfectly associate random-looking input data 
with arbitrary output codes; this is one of the interesting properties of train- 
able neural networks.) 

It is important to note that an untrained network always starts with 
random interconnection weights between nodes. The hidden nodes act as a 
kind of mathematical space in which to compute the problem of associating 
inputs with outputs, thus if we begin with say, 20 hidden nodes, we have a 
topological flexibility roughly equivalent to a 20-dimensional space. With a 
space this large, there are a vast number of "solutions" to the problem, and 
it is likely that a new solution will be found each time the network is trained 
from scratch. In other words, training the network once will not guarantee 
the "best" solution, only an acceptable solution (i.e., the network does not 
know that we want to transfer its knowledge to other data; it just solves the 
association problem). Because I was interested in exploring the possibility of 
knowledge transfer, the process described above in steps (a)-(f) was per- 
formed repeatedly, forming a distribution of transfer results against which to 
compare the random and scrambled dataset results. 

Transfer Test 

The transfer test consisted of 5 steps: 
(a) The network was trained (from a random starting state) on the 32-line 
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per output node at the end of a pass. From experience this was determined 
to take between 1,000 and 3,000 passes. 

(b) The trained network was tested against the transfer dataset by sending 
each of the 32 items in the transfer dataset through the net in one feed-for- 
ward pass, then comparing the values obtained at the output nodes against 
the desired values. The observed value at an output node was considered to 
be 0 if the activation was less than 0.5, otherwise it was considered to be a 1 .8 

The number of correct bit-matches was then used as a measure of success for 
the transfer test. For example, if all 5 bits of an operator code number were 
identified correctly after passing that operator's data through the network, 
the data-operator relationship learned by the network during the training 
phase would have transferred perfectly (in informational terms, we could 
think of the transfer test as having "transmitted" 5 bits of information). If 4 
bits were correctly identified, this would constitute an 80% match (transmit- 
ted 4 bits of information), and so on. 

(c) The same process was conducted for the random dataset and the 
scrambled dataset, producing for each of the three tests the number of 
perfectly correct matches (515 bits correct) out of 32 operators, 4 out of 5 
correct matches (out of 32 operators), and 3 out of 5 (out of 32 operators). 
Thus, the score for a perfect transfer test would be 32 (all operators correctly 
identified with 5 out of 5 bits correct). 

(d) Steps a-c were repeated 100 or more times to form a distribution of 
results for the transfer, random, and scrambled tests. 

(e) The means of the distributions obtained in step d were compared with 
a t-test.9 The null hypothesis is that there are no consistent patterns within 
the data, so there is nothing that can be transferred, and thus there should be 
no differences among the transfer, random, and scrambled dataset distribu- 
tion means. The alternative hypothesis is that there is something consistent 
in the data that is associated with each operator; that these associations can 
be learned; and that these can be detected in independent data produced by 
those same operators. These effects would manifest in the present case by 
shifting the transfer distribution mean positive with respect to the random 
and scrambled distribution means, and the random and scrambled means 
should not differ significantly from one another. Thus, three t-tests were 
planned in advance: Transfer vs. Random, (TR) Transfer vs. Scrambled 
(TS), and Random vs. Scrambled (RS). 

Results 

In considering the results, it is important to note that the values at the 
output nodes of these networks resemble Bernoulli trials with p = 0.5. For 
example, we would expect to find approximately one operator correctly 
identified by chance (say, one "hit") out of 32, or approximately 5 hits out 
of 32 where 4 out of 5 bits were correctly identified, and so on. Actually, the 
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chance expected value at the (binary transformed) output nodes also de- 
pends on the initial interconnection weights in the network, on the form of 
the activation and learning rules, and on the input values. With these ca- 
veats in mind, by rough approximation we would expect to see about one 
operator completely identified by chance (i-e., all five code bits correct), and 
one completely missed (i.e., all five bits missed). 

Table 1 shows results of tests using three network configurations. Each of 
the simulations took about 6 hours to complete on a Silicon Graphics IRIS 
4-D workstation. l o  

Discussion 

If the signatures hypothesis is true, it would manifest in this study by 
making the number of correctly identified operators greater in the transfer 
condition than in either the random or scrambled conditions. We would 
expect to find significant differences between the transfer vs. random and 
transfer vs. scrambled conditions, and a nonsignificant difference for the 
random vs. scrambled condition. This is what the results show (Table I) .  
The two histograms in Figure 3 display the distributions for the "415 bits 
identified" results. 

Another way of illustrating transfer in this study is by examining the 
difference between means of perfectly identified (515 bits) and perfectly 
unident$ed (015 bits) operators for each of the three conditions. Under the 
signatures hypothesis, we would expect to find more cases of 515 code bits 
identified than 015 code bits identified in the transfer condition, but not in 
the random or scrambled conditions. Because the 515 and 015 means within 
the three conditions are not fully independent, the statistics shown in Table 
2 are based on t-tests for differences between correlated pairs of means. 
Figure 4 shows the separation between the distributions for the training- 
transfer test. 

Given these results, one may wonder-under the assumption that 
within-person performance is reasonably consistent-whether repeatedly 
presenting a network with multiple examples of the same operator's data 
(i.e., from different experiments) would improve the transfer rate. Table 3 
shows test results for correctly identified operators (515 code bits correct) in 
a 20 hidden node network trained on three independent datasets for each of 
nine people. (Nine persons in the PEAR database had completed three 
separate series.) 

Comparing results in Table 3 with those in Table 1 suggests that there 
may be an advantage in presenting networks with repeated, independent 
views of the same operators' data. More research is needed to determine 
ways of training networks to recognize this data, as well as to select optimum 
statistical parameters to use as inputs. In addition, even though the trans- 
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TABLE 1 
Means, standard deviations, and t-tests for transfer, random, and scrambled tests, using 

actual and random training-transfer data; all results are based 
upon N = 100 training-transfer repetitions 

10 Hidden Nodesa 

1 2 Bit matches (#/5) 
Transfer 

Mean 
SD 

Random 
Mean 
SD 

Scrambled 
Mean 
SD 

16 Hidden Nodesd 

1 2 Bit matches (#/5) 
Transfer 

Mean 
SD 

Random 
Mean 
SD 

Scrambled 
Mean 
SD 

30 Hidden Nodesd 

1 2 Bit matches ( # / 5 )  
Transfer 

Mean 
SD 

Random 
Mean 
SD 

Scrambled 
Mean 
SD 

t-tests 
10 Hidden nodes 

t (T-R)" 
t (T-S) 
t (R-S) 

16 Hidden nodes 
t (T-R) 
t (T-S) 
t(R-S) 

30 Hidden nodes 
t (T-R) 
t (T-S) 
t (R-S) 

" Trained 4,000 passes. 
The network identified 4 out of 5 operator code bits for an average of 6.02 operators out of 

32. 
' The network identified all 5 operator code bits for an average of 1.46 operators out of 32. 

Trained 2,000 passes. 
" All t-tests for differences between independent means, 198 degrees of freedom. Significant 

results, one-tailed, are highlighted in bold for emphasis. 
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0  1 2  3 4 5  6 7 8 9 1 0 1 1  1 2 1 3 1 4 1 5  
Number of operators identified out of 32 

Fig. 3. Histogram for the number of times that four out of five operator code bits were correctly 
identified, out of a total of 32 operators, using a 10 hidden node network. T4 refers to the 
training-transfer test and R4 refers to the training-random test. Thus, in 100 independent 
repetitions of the training-transfer test, the mean number of operators in which 80% of 
the operator code was correctly identified was 6.02, whereas the equivalent mean in the 
random test was 4.9 1. Compare these figures with 5.0, which is the number expected by 
chance assuming that the output nodes are Bernoulli trials with p(hit) = .5. 

solute magnitude was miniscule. Obviously, if the original "signal" (i.e., 
influence on an RNG output) were more robust, then the neural network 
would be more likely to recognize a potential signature. Thus, research is 
also needed on ways of statistically increasing the magnitude of these anom- 
alous influences. 

Conclusion 

This study suggests that a neural network may learn to associate data 
produced by a random number generator with the identity of individuals 
who attempted to "mentally influence" the output statistics of the genera- 
tor. Results of tests with different network configurations suggest that it may 

TABLE 2 
Paired t-tests (99 df) for differences between correlated means, for 5 vs. 0 correctly identified 
operator code bits, in the training-transfer (T), training-random (R), and training-scrambled 

(S) conditions; significant results are highlighted in bold 

Paired t-tests 

Hidden Nodes T5-TO R5-RO S5-SO 
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Number of operators  i d e n t i f i e d  out of 32  

Fig. 4. Histogram for five and zero operator code bits correctly identified, out of a possible 32 
operators, for the training-transfer (TO & T5) condition, using a 10 hidden node net- 
work. In other words, in 100 training-transfer test repetitions, the mean number of times 
that zero operator code bits were identified was 0.6 1, whereas the mean number of times 
that all five operator code bits were identified was 1.4. Results shown in Table 2 show 
that this separation is seen only in the transfer datasets, and not in the random or 
scrambled datasets. 

be possible to develop experimental protocols that are better suited for 
network analysis than protocols currently used to generate data in typical 
random event generator experiments. 

For example, consider an experiment requiring an operator to attempt to 
simultaneously influence multiple RNGs. The multiple, parallel outputs of 

TABLE 3 
Means, standard deviations, and t-tests for transfer, random, and scrambled distributions; 
N = 50 training-transfer repetitions of a 20 hidden node network, trained for 2,000 passes; 

this network was presented with data from three independent series for each of nine 
operators, for a total of 27 lines of input;" significant tests are emphasized in bold 

515 Correct Matches 

Transfer 
Mean 
SD 

Random 
Mean 
SD 

Scrambled 
Mean 
SD 

t (T-R) 
t (T-S) 
t(R-S) 
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the RNGs would be fed into a network for analysis. With this form of 
parallel data, plus additional parameters such as direction of intention (e.g., 
high aim or low aim), feedback presentation style, age, gender, environmen- 
tal variables, and so on, a network may be able to learn to associate operator 
identity with his or her data at a transfer rate approaching practical utility. 
Trial-by-trial parallel feedback displayed to operators could be more inter- 
esting than the typical display of numbers of hits, or linear graphs, and 
instead provide graphical representations of multidimensional phase rela- 
tionships among the outputs of the RNGs. 

Such displays would have the advantage of conveying more information 
to operators at a single glance, would allow more interesting forms of feed- 
back (e.g., dynamically shifting coherent vs. chaotic shapes and colors), and 
would allow experimental protocols in which shift of a theoretical mean of a 
distribution would be secondary as compared to the relationships of means 
of independent binomial distributions. It may be that phase relationships 
are "easier" to influence than mean shifts because changes in phase do not 
require pushing a device against its normal operating probabilities, that is, 
different phase relationships among the outputs of independent random 
generators can be achieved without shifting the individual distribution 
means beyond chance expectation. 

Endnotes 

' For an introduction to the capabilities and theories of neural networks, see the special issue 
of IEEE Computer, 21, 1988. 

* I am indebted to Robert Jahn, Roger Nelson, and Brenda Dunne for providing a copy of this 
dataset, which was retrieved from computer tape archives maintained by the PEAR laboratory. 

Note that under the null hypothesis, it should not matter when or by whom the data was 
collected, so the present method would offer no advantage in identifying "signatures." 

In other words, V = (C Z2/N) ,  where N = 25. 

I will allow the interested reader to figure out why this is so, with the hint that successive 
operator codes in the training set are sequential binary numbers. 

The program allows a wide variety of parameters to be set, including variables related to how 
fast the network learns, how many nodes there are, the range for initial random weights used to 
interconnect the nodes, and so on. I am indebted to Stephen Hanson and Robert Masterson for 
their gracious assistance with this software. See the Appendix for the activation and learning 
rule equations. 

' The back-propagation method used here is an extension of the well-known generalized delta 
rule (Rumelhart, Hinton, & Williams, 1986), allowing the use of non-euclidian error signals. 
Hanson & Burr (1987) have shown that this method is particularly effective with noisy data. 
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In this network, output activation levels were continuous-valued numbers between 0 and 1. 

' The variance in the transfer dataset comes from the randomness in the neural network's 
initial state, whereas the variance in the random and scrambled datasets come from two sources: 
randomness in the network and randomness in the pseudorandomly generated data. Thus, in 
statistical terms, the t-test is conditional on the transfer dataset. 

'O This computer runs at about 12.5 million instructions per second (MIPS), which suggests 
why neural network analyses have only recently become practical. 

' '  It should be noted that the number of training passes, hidden nodes, training-transfer 
repetitions, and so on, were chosen by experience with these networks rather than by algorith- 
mic or formal criteria. This is because the state-of-the-art of neural networks remains more of an 
art than a science. 
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Appendix 

This semilinear function used to calculate activation in the forward pass is 
from Rumelhart, Hinton and Williams (1986, p. 329): 

where 

o is the output activation, 
p is a pointer referring to the hidden or output layer of nodes, 
w are the interconnection weights from input to hidden, or hidden to output 

nodes, 
i ranges over the number of input or hidden nodes, and 
j ranges over the number of hidden or output nodes. 

For the backwards pass, the back-propagation error (A) is computed for 
output nodes as: 

where 

SGN is the sign of (tj - oj), 
t is the teacher signal (the desired output), 
o is the observed activation level at the output node, 
and r is a real number (chosen as r = 3 for all network simulations reported 

here). 

Now A for hidden nodes is calculated as: 
Nout 

A, = C Ak*wtik)*h,*(l - h,), 
k= l 

where 

Nout is the number of output nodes, 
Ak is the activation on an output node, 
w is the interconnection weights between hidden and output nodes, and 
h is the activation on hidden node j. 

We then modify the weights in the network according to the rules: 
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and 

where 

a controls the "inertia" of learning in the network, 
t controls how fast the network learns, 
t is the time or processing cycle number, and 
activationi is the amount of activation on node i. 

Note that weights are updated after each presentation of an input/output 
pair, and the amount of change depends on how much the weights were 
changed on the previous cycle (and the value of a). 


