
RESEARCH ARTICLE

Multiple-Analysis Correlation Study between Human 

Psychological Variables and Binary Random Events

HARTMUT GROTE 
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), and Leibniz-Universität, Hannover, Germany

hrg@mpq.mpg.de

Submitted July 30, 2016; Accepted February 22, 2017; Published June 30, 2017

Abstract—Mind–matter interaction experiments have been progressing 
from targeting simple bias of random number generators to correlation 
studies between psychological and physical variables, carried out over 
multiple combinations of these. This paper reports on a new correlation 
study between human intention and the output of a binary random num-
ber generator. The study comprises a total of 720,000 bits from 20 equal 
sessions, each with a different human participant. Each participant spent 
one hour attempting to ‘influence’ the outcome of the random number 
generator according to a pre-selected intention. During this time the par-
ticipant was provided feedback on his/her performance by an analog me-
chanical display, with the needle of a galvanometric instrument moving to 
the left or right of its initial position, according to the instantaneous output 
of the random number generator. Psychological variables were obtained 
from the participants by a hardware dial ahead of each individual run and 
by a questionnaire before the participant’s first experimental session. Three 
types of data analysis were defined and tested before looking at the data, 
resembling a blind analysis technique. The first analysis looks at the distri-
bution of hit rates from the 20 participants. A former study of this kind had 
found a significant result for this type of analysis (Grote 2015). The second 
analysis tests for correlations between psychological variables obtained 
before each run and the hit rate of the corresponding subsequent run. The 
third analysis is a conceptual replication of von Lucadou’s correlation ma-
trix method. It consists of multiple correlation tests between psychological 
and physical variables, which also can be interpreted as a multiple-analysis 
technique. The results of the study are p-values of p = 0.438, p = 0.703, and 
p = 0.0949 for the three analysis’ results to have occurred by chance under 
a null hypothesis. The combined p-value for these results is p = 0.315. While 
none of the pre-defined analysis results is significant, a post hoc variant of 
Analysis 3 that includes the control data is significant with p = 0.012 to have 
occurred by chance, under a null hypothesis.
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Introduction

The debate on the existence or non-existence of mind–matter interaction 
(MMI) is a topic at the fringes of mainstream science, with sometimes 
strong opinions held by individual researchers defending either view. While 
for some researchers in the field of anomalous psychology, the existence 
of mind–matter interaction seems beyond doubt (see, e.g., Radin & Nelson 
1989, 2003, Jahn & Dunne 1986), this is not the case at all for the majority 
of the scientific audience (Odling-Smee 2007, Bösch, Steinkamp, & Boller 
2006). Experimental evidence is often a matter of the interpretation of the 
studies, which makes it difficult for new researchers to form an opinion 
on the research performed to date, as is visibly exemplified in the dispute 
on the interpretation and validity of meta-analysis of existing mind–matter 
experiments (Bösch, Steinkamp, & Boller 2006, Radin et al. 2006, Pallikari 
2015). See also the references in Bösch, Steinkamp, and Boller (2006) for 
an overview of existing research.

Also, the more cautious label of mind–matter correlation (i.e. correlation 
between human intention and the output of a physical system), which may 
not postulate direct causality, seems largely neglected by most scientists, 
even though attempts at explanations of a putative correlation effect, like 
for example the interpretation as entanglement correlations in a Generalized 
Quantum Theory (Atmanspacher, Römer, & Walach 2002, Filk & Römer 
2011) do exist (von Lucadou, Römer, & Walach 2007, Walach, von 
Lucadou, & Römer 2014).

For these reasons, it seems of some value to the field if new mind–
matter experiments are performed from time to time, in particular if new 
researchers are involved in conducting such experiments and possibly new 
aspects are introduced in the experimental approach. The latter should also 
serve to prevent strict replications of earlier MMI-like experiments, which 
may suffer from a possible decline of a putative effect, found by a number 
of replication studies in this field, and discussed for example in Kennedy 
(2003), von Lucadou, Römer, and Walach (2007), Walach, von Lucadou, & 
Römer (2014), and references therein.

The study described in this paper is the second study by this author. The 
first study is described in Grote (2015), and the experimental setting of that 
study has been modified in the following ways:

1. The rate of random bits produced has been reduced from 1,000 
bits/s to 10 bits/s.

2. The random bit generation process has been modified from a 
Schmidt process to a 1-step Markov process.1 

3.  The feedback has been extended to include a color-lighting 



H u m a n  Ps y c h o l o g i ca l  Va r i a b l e s  a n d  B i n a r y  R a n d o m  E v e n t s                            233

scheme in the background of the galvanometer needle.
4.  Feedback has also been extended by the sound of a gong, which is 

played during a run, if the participant is successful.
5. The sequence of left/right intentions is recorded in the new 

experiment.
6.  The duration of a single run has been reduced from 60 s to 30 s.
7.  Before each participant starts the first run, psychological variables 

categorized into 6 items have been obtained by questionnaire.
8.  Before the start of each run, psychological variables are obtained 

from the participant.
9.  The number of participants is 20.

Items 1 and 2 have been introduced based on a suggestion by W. 
von Lucadou. Items 3 and 4 have been introduced to potentially increase 
the focus of the participants, and items 5 to 8 allow for different types of 
analysis, mostly searching for correlations between psychological and 
physical variables.

While the outcome of the first study (Grote 2015) was not significant 
overall, one out of four individual analyses was found significant. That 
analysis is also carried out in this study (Analysis 1), testing the distribution 
of the basic results (z-scores) of the 20 participants. Analysis 2 in this study 
tests for correlations between three psychological variables obtained before 
each run, and the basic outcome (number of hits above chance expectation) 
of the corresponding runs. Analysis 3 is a conceptual replication of the 
correlation matrix technique that has been used by von Lucadou and 
others (von Lucadou 2006, von Lucadou, Römer, & Walach 2007), though 
with fewer variables and fewer participants. This technique uses multiple 
correlation tests between physical variables (properties of the data) and 
psychological variables (properties of the participants). No predictions are 
made about which of the correlations would be significant, but rather the 
combined significance of all correlations is assessed. This is further detailed 
in the section Pre-planned Data Analysis.

The analysis of the data was defined and tested before any of the data 
were actually analyzed, which is also referred to as a blind analysis method 
(Klein & Roodman 2005). Blind analysis is a strict form of a pre-specified 
analysis in which the analysis code is fully implemented and tested before 
the data are looked at. Blind analysis is particularly useful in looking for 
small effects in noise and, in the opinion of the current author, is well-suited 
to address criticisms of data analysis (Wagenmakers et al. 2015) and of 
questionable research practices (Bierman, Spottiswoode, & Bijl 2016) in 
this domain of research.
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It was decided to attempt to publish the result of this study regardless 
of the outcome of the analysis, in order to not contribute to publication bias.

In the section Experimental Design, the experimental setup is 
described, followed by the section Pre-planned Data Analysis on the pre-
defined data analysis plan. The results of the analysis are presented in the 
Results section. Finally, the Discussion section contains a brief discussion 
of the analysis and results.

Methods

Experimental Design

The experiment described in this paper was designed and conducted by 
the author. Participants were 20 people (including the author) in different 
relationships with the author (i.e. friends, friends of friends, work colleagues, 
etc.) who were interested in the topic, and willing to spend one hour each on 
actual experimentation time. The participants’ age spanned from 21 to 76 
years old with a mean age of 46 and a standard deviation of 13 years. The 
participants included both genders, 11 female and 9 male.

Each participant had agreed to carry out 120 “runs” of the experiment, 
with each run lasting 30 seconds. A single run would always begin by the 
participant selecting whether he/she would try to influence the motion of the 
needle of a galvanometer display to the left side or to the right side during 
that run. This choice had to be executed by the participant by pushing a 
switch either to the left or to the right, respectively. The chosen direction 
would then be displayed to the participant throughout the following (30-s 
long) run, in order to remind the participant of the chosen direction.

Next, the participant had to turn a dial in order to choose on a scale 
from 0 to 10 his/her actual mood (0 meaning ‘very bad mood’, 10 ‘very 
good mood’). This dial consisted of a rotary knob that could be rotated by 
about 270 degrees, in order to choose a number between 0 and 10, which 
would be displayed to the participant while the knob was rotated. Then the 
participant would press the ‘start’ button to begin the 30-s long run. While 
the run was active, a colored light was lit in the background of the display 
needle, to signal to the participant that the run was in progress. Figure 1 
shows a photograph of the galvanometer display with the background lit 
during a run.

During each 30-s long run, random binary events would be generated 
at a rate of 10 per second. A Markov chain with a memory length of one 
was used to generate the random numbers, as described below. The draw 
(from the Markov chain) of a logical ‘0’ would result in a step of the display 
needle to the left side of its current position, while a logical ‘1’ would result 
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in a step of the needle to the right side of its initial position. In this way, 300 
binary random draws were accumulated during each 30-s run, resulting in a 
corresponding random walk of the needle. The maximal range of the needle 
was 11 steps in either direction, with one standard deviation equal to 5 steps 
(N = 300 for Equation 2 below). The color of the light in the background of 
the display needle was made to change in correspondence with the position 
of the needle. Additional feedback was given to the participant by playback 
of a gong sound when the participant exceeded a threshold of 6 steps in 
the intended direction over the expectation value (zero steps), during the 
ongoing run.

The participants operated the device (almost exclusively) at their homes 
and at times convenient to them, according to their own choice. They were 
instructed to if possible be alone in the room when operating the device, and 
to finish the assigned 120 runs within one to two weeks if possible.

An individual run of 30 s could not be interrupted by any means, by an 
internal mechanism that inhibited switching the device off while a run was 
proceeding. An internal battery in the device assured that the device would 
run independent from the main power and thus also independent from any 
possible interruption of the main power during a run. The participants were 
free to distribute the time to perform the runs at their choice and could 
choose for any run between left or right intention, but had to respect the 
constraint that over the 120 runs both left and right intention had to be 
picked the same number of times, 60 each, respectively. For example, it 
would have been possible to do all 60 left-intention runs first, followed 
by the 60 right-intention runs, but the device would not allow for either 
intention to be chosen more than 60 times, to assure the balancing of 

Figure 1.  The galvanometer display with lit background during a run.
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intentions. Therefore, each participant conducted 60 runs with left intention 
and 60 runs with right intention, accumulating one hour of data in total. 
Each participant committed to collect this one hour of experimental data, 
and each participant fulfilled this goal. The total timespan used by the 
participants to complete the 120 runs varied from less than 1 day to about 
4 weeks. The experimental data-taking started in the spring of 2014 and 
concluded in the summer of 2015, when the number of 20 participants had 
been reached. Up to four participants could share the device (e.g., members 
of a family) by freely distributing experimentation time among themselves. 
Each participant simply had to choose his/her name on the display ahead of 
a run, in order to allow the data to be associated with the correct participant.

The data of the experiments were stored in two different formats in 
the device as a safeguard against data errors. No such errors occurred. The 
data were transmitted to a personal computer after 1 to 4 participants had 
completed their runs. This data transmission used check-sums to safeguard 
against transmission errors, and no such errors occurred.2 The device was 
then prepared for the next participant(s) by resetting the data memory of the 
device and programming the names of one or more new participants.

In addition to participant data, a set of control data was taken, which was 
not explicitly subject to any interaction with the intention of any participant.

Between participants (i.e. when the device was in the hands of the 
conductor of the study for transferring data and preparing the device for 
new participants), a number of complete datasets for ‘dummy participants’ 
were automatically generated. For this purpose, dummy persons with names 
‘01’ to ‘20’ were generated by the conductor, and when the device would 
recognize a dummy participant name (by the fact that such a name would 
start with a number rather than with a letter), it would automatically start 
an individual run after a random time interval of order 1 minute length. The 
‘intention’ for each such run was chosen randomly by the internal hardware 
random number generator (RNG) (see the section The Binary Random 
Number Generator) but satisfying the required equal total number of left 
and right intentions as for the real runs. This way a complete set of 20 
dummy participants was created, spread throughout the time of acquisition 
of the participants’ data, which is taken as a complete control dataset for 
the study.

As a particular feature of this study, the participants carried the 
experimental device to their homes, where they could ‘work’ on the 
experiment, at the time and in the environment of their choice. While this 
may appear to be giving up control over the conductance of the experiment 
compared with a laboratory setting, it has the advantage that the participants 
might feel more at ease in environments of their choice, and thus might get 
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more involved in their effort to ‘influence’ the needle. Ultimately, even in 
the laboratory, the conductor of the experiment has no control of whether 
the participant would assert ‘influence’ on the device according to the pre-
stated intention or not. Although no fraud on the participants side was to be 
expected whatsoever, principal measures to detect physical manipulation 
or malfunctioning of the binary random number generator were taken, as 
detailed below.

The author preferred to choose a real physical system (the needle of a 
galvanometer display) over a computer screen, which is often used in other 
experiments of this kind. Computer screens are so common in our modern 
life, that a mechanical display carries the element of ‘being different’.

A description of the random number generator is given in the Appendix 
section The Binary Random Number Generator.

Pre-Planned Data Analysis

To avoid bias, the data analysis procedure was defined and tested before any 
of the data were actually looked at. Three different investigations (named 
Analysis 1, Analysis 2, Analysis 3) were carried out, as described in the 
following subsections. The principal outcome of each of the three analyses 
is a number describing the probability that the obtained result would have 
occurred by chance under the null hypothesis, i.e. assuming no correlation 
between the data and experimenters’ intention.3 The chance probability for 
the combined results of the three investigations is also given.

Each of the 3 analyses uses simulated (Monte Carlo) data, in order to 
estimate likelihoods of test results from the participants (and control) data. 
Using simulated data is a standard technique when the background cannot 
be easily modeled analytically and in low–signal-to-noise experiments. The 
null-hypothesis distributions against which the measured scores are evaluated 
are generated using software random number generators, simulating trials 
like the ones that the participants in the experiment undertake. However, 
there is actually no participant providing an intention and so we take the 
results from these fake-trials as expressions of the statistical scores under 
the null hypothesis.4 The simulated (Monte-Carlo) data consist of 10,000 
complete sets of data, each resembling data of a full study comprising 20 
‘participants’.

Another feature of the analysis is that in particular Analysis 2 and 
Analysis 3 have several degrees of freedom, which is equivalent to applying 
several tests to a set of data. However, no predictions are made about the 
outcome of individual tests, but the results of a number of tests are combined 
into one ‘figure-of-merit’ (FOM), which can also be called a ‘test statistic’. 
This FOM can, for example, be the product of the estimated likelihoods 
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of individual test results. This principle was inspired by the correlation 
matrix technique used by von Lucadou and others, as mentioned in the 
Introduction. In the form used here in Analysis 2, it mainly consists of a 
method to perform multiple analysis. Analysis 3 is a conceptual replication 
of the correlation matrix technique as detailed below.

The control dataset, as defined in the above section Experimental 
Design, will be subject to the same Analyses (1, 2, and 3) as the main dataset. 
However, the control data play no role in the pre-defined analysis, and can 
be viewed as a consistency check or can be used in post hoc analysis. Since 
for the control data there exists no separate set of psychological variables, 
the psychological variables of the 20 participants are used to be correlated 
with the control data (this applies to Analysis 2 and Analysis 3, where 
psychological data are used for correlation with physical data).

All three analyses have been tested with fake datasets, which have 
been generated by an independent (independent from the algorithm used to 
generate the simulated/Monte Carlo data) algorithm. No deviation from the 
expected uniform distribution was found in the 100 datasets used for testing.5

Analysis 2 and Analysis 3 have also been tested with dedicated fake 
datasets that included intentional biases tailored to the specific analysis. 
This way the proper functioning of the analysis was confirmed, i.e. the 
ability to detect what the analysis is supposed to detect.

Finally, we point out that the description of the experiment, the 
definition of the pre-planned data analysis, as well as the analysis code 
and the complete experimental data, have been uploaded to the website 
openscienceframework (https://osf.io/) prior to the actual analysis of the 
data. Also prior to the actual analysis, the data on said website were marked 
as a read-only representation of the project (i.e. it cannot be modified 
anymore), and can be made accessible upon request to the author. In 
particular, this procedure is a blind analysis procedure. The pre-defined 
analysis of the experimental data is performed only after the analysis code 
has been frozen. In principle, it can then be performed by a single button 
press. This process is called the unblinding or opening of the box in other 
fields. Blind analysis has been successfully applied in nuclear physics and 
particle physics (Klein & Roodman 2005) and is the standard method to 
analyze data in these fields today.

Analysis 1. We define a hit to be a high bit when the participant’s 
intention was to move the needle to the right, and to be a low bit when 
the participant’s intention was to move the needle to the left. The total 
number of hits nhits is the sum of hits scored under right intention plus the 
hits acquired under left intention. The z-value over a total number of trials 
N is then defined as
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 The standard deviation SD is estimated as

                                                    / 12SD N                                            (2) 

Note that the factor 12 under the square root comes from the fact that we 
obey the statistic of a 1-step Markov chain (von Lucadou 2006), where each 
random bit depends on the last random bit, as a result of the bit-generating 
procedure described in the Appendix section The Binary Random Number 
Generator. The z-score is a useful quantity because it provides an immediate 
sense of the deviation of the results from expectation.6

For Analysis 1, the data as detailed above (z-scores for the number 
of obtained hits) are calculated for each of the 20 participants separately, 
such that 20 z-scores are generated. These 20 z-scores are then sorted 
and (frequentist) p-values are generated for the highest ranking, second-
highest ranking, third-highest ranking, and so forth down to the lowest 
ranking, by comparison with the distribution of the same ranking values 
determined from a simulated (null hypothesis) dataset. These p-values are 
two-sided, with p = 1 if a data point is exactly in the middle of the compared 
distribution. The resulting 20 p-values are combined (by summing over the 
inverse squares of p-values) and result in the figure of merit (FOM) for this 
test. The chance probability for the value of this FOM is measured against 
the distribution for the same FOM derived from the Monte Carlo dataset. 
A one-sided probability will mean that the FOM of the test data (or a lower 
one) has occurred by chance. This is the result of Analysis 1.

Notes on Analysis 1. This analysis is sensitive to the distribution of results 
among the participants. It is also sensitive to deviations from randomness 
in directions opposite to a participants’ intention. No prediction is made on 
how in particular the individual results would deviate from the expected 
distribution. However, a one-sided probability is chosen as the main result, 
under the hypothesis that deviations would more likely show up in the direction 
of deviations of individual results from their reference class. A probability of 
this analysis that is close to unity would indicate that the participants’ data are 
closer to the expected distribution than expected by chance.

The total hit rate over all participants, which is the classical type of 
analysis for this kind of experiment, is not foreseen as a test, but can be 
considered as post hoc analysis, while explicitly not counting in the final 
statistical evidence of the study at hand.

(1)
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Analysis 2. This analysis comprises three correlation tests between 
three different psychological variables obtained before each run, and the hit 
rates of individual run results.

The three psychological variables used are:

• The variable mood, obtained before each individual run on a scale of 
0 to 10.

• The variable time, also obtained before each individual run, which 
is the time the participant needed from starting to choose the mood 
parameter (by turning the mood dial) to the actual start of the run (by 
pressing the start button).

• The variable sequence, which is a measure of how many runs in the 
past the direction of the intention (left or right) was chosen to be the 
same as for the actual run.

For the calculation of the correlations, Spearman’s rho is used. The 
correlations are split between right and left intention, such that there are 
two correlations calculated for each psychological variable (and for each 
participant). Each correlation uses the 60 hit rates (as defined in the 
subsection Analysis 1 of the Pre-Planned Data Analysis section) for 
each run of either left or right intention. The p-values of the two resulting 
correlation factors pertaining to one psychological variable are multiplied 
and yield the test result for one correlation test. This procedure is performed 
for all 20 participants, and the 20 test results are multiplied to yield one 
combined result for each psychological variable.

Each of the three combined results is then compared to the equivalent 
test results of a large number of simulated data (again by a ranking). By 
this comparison, a two-sided (frequentist) probability is estimated for each 
test, that the acquired result (or a lower/higher one) would have occurred by 
chance. In a second step, all of these probabilities (one for each statistical 
test) are combined (by summing over the inverse squares of p-values) to 
yield a single figure of merit (FOM) of the acquired data. Finally, this FOM 
is compared to the distribution of the same FOMs of the simulated data, and 
a one-sided (frequentist) likelihood results, that the actual FOM (or a lower 
one) of the data under test would have occurred by chance. This likelihood 
is the result of Analysis 2.

Notes on Analysis 2. While basically a test of 3 correlations, this 
analysis can also be interpreted as a correlation matrix technique as described 
for example in von Lucadou (2006). A correlation matrix (as used in these 
references) shows the number (and strength) of correlations between several 
physical and psychological variables of the experiment as a whole. In terms 
of Analysis 2 defined here, there are 3 psychological variables, and one 
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physical variable, such that this ‘matrix’ has only three entries. However, 
one could also argue that three correlations are actually calculated for each 
participant, which are then combined for all 20 participants. In this sense 
we have 60 correlations.

Analysis 3. This analysis is a conceptual replication of the correlation 
matrix technique used by von Lucadou and others.

Psychological variables of each participant have been obtained by 
questionnaires before the start of the first run of that participant. The 
questionnaires are summarized into the following categories, to form 6 
psychological variables:

• TAS: Tellegen absorption scale with 34 items
• SG: Sheep–Goat scale with 9 items
• SENS: reduced sensitivity person scale with 9 items
• TRANS: reduced transcendental scale with 6 items
• EX: Extraversion scale with 12 items
• MED: Experience with a meditation technique

Five physical variables are formed for each participant, resulting from 
the 120 runs that each participant conducted:

• HIT: Total hit rate
• ACR: Autocorrelation of the time series data, shifted by 1 and 2 s
• RUN: Runtest of time series data, testing the hypothesis that the data 
        are randomly distributed in time
• EXC: Number of excursions in intended direction
• GNG: Number of audio feedbacks (gongs) obtained

For each psychological variable, the correlation with each physical 
variable is calculated using Spearman’s rho. The resulting 30 values are 
then compared to the equivalent test results of a large number of simulated 
data (again by ranking). By this comparison, a two-sided (frequentist) 
probability is estimated for each test, that the acquired result (or a lower/
higher one) would have occurred by chance. In a second step, all of these 
probabilities (one for each correlation) are combined (by summing over 
the inverse squares of p-values) to yield a single figure of merit (FOM) 
of Analysis 3. Finally, this FOM is compared with the distribution of the 
same FOMs of the simulated data, and a one-sided (frequentist) likelihood 
results, that the actual FOM (or a lower one) of the data under test would 
have occurred by chance. This likelihood is the result of Analysis 3.

Notes on Analysis 3. This is the first independent conceptual replication 
of the correlation matrix method (CMM) using multiple participants. A 
brief explanation of the CMM method can be found in the Appendix section 
Notes on the Correlation Matrix Method.
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A strange anecdotal occurrence: Trickster at play? The author (I, 
for this section) would like to share an anecdotal occurrence here, which 
happened during the testing of the data-analysis procedures. There are 3 
types of analysis defined, as described above. As far as my best memory 
goes, on all three occasions of first testing each analysis (but certainly for 
2 of them), the very first statistical outcome for a single test dataset was 
rather on the edge of the distribution of possible outcomes (of order 1% or 
lower), which initially raised my concern with the validity of the analysis. 
However, after applying more than 100 test datasets, the statistics of the 
outcome resolved to the expected normal distribution, for all 3 analyses, 
as stated above. For all of these tests, new test data were generated and the 
system timer value was set as seed number to the pseudo-random algorithm 
before generating each test dataset.

One other similar instance happened with an auxiliary analysis for 
Analysis 3 which was testing the counting method of matrix elements above 
a threshold, rather than using the pre-planned method of combining all matrix 
elements. When first testing the counting of correlations above a threshold, 
again with a fresh set of simulated data, on the very first instance this number 
was found to be 8. According to the test with many hundred simulated 
datasets afterward, the likelihood for obtaining 8 significant results is about 
0.1%. Just to be clear, the generation of the matrix correlation factors was 
not changed on this occasion, just their evaluation via the threshold method 
was tested as an auxiliary investigation of the analysis procedure.

Taking at least 2 instances with 1% chance and one with 0.1%, this 
gives a combined chance of about 10−5 using Fisher’s method for combining 
p-values uniform on the interval [0,1] (Fisher 1970). Of course, this was not 
predicted, and is a spontaneous observation, which, however, I found quite 
curious and which reminded me of G. Hansen’s book The Trickster and the 
Paranormal (Hansen 2001) as well as J. Kennedy’s paper “The capricious, 
actively evasive, unsustainable nature of psi” (Kennedy 2014).

It is obvious that the testing of the pre-defined analysis with a single set 
of test data can be viewed as a PK-like experiment on its own. The Trickster 
quality of this occurrence is interesting to contemplate.

Results

Analysis 1

Figure 2 shows the result of Analysis 1. The probability of the participants’ 
results to have occurred by chance (null hypothesis) is p = 0.438, which is 
not significant. This probability is obtained by the fraction of more extreme 
results (more negative FOM) divided by the number of all results of the 
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simulated data. As implicit in the description of this analysis in the subsection 
Analysis 2, this result means that the distribution of the 20 participants’ 
results (regarding their individual hit rates) does not significantly deviate 
from the expected distribution under a null hypothesis.

The probability for the result of the control dataset to have occurred by 
chance (null hypothesis) is p = 0.759, and thus also not significant. Table 4 
with the individual participant results can be found in the Appendix section 
Individual Participant Results from Analysis 1.

Analysis 2 

Figure 3 shows the results of Analysis 2. The probability for the participants’ 
results to have occurred by chance (null hypothesis) is p = 0.703, which is 
not significant. The probability for the result of the control dataset to have 
occurred by chance (null hypothesis) is p = 0.512, and thus also not significant.

Figure 2. Result of Analysis 1 for the participants’ dataset and the control 
dataset compared with simulated data. The horizontal axis denotes 
a normalized logarithmic representation of the figure of merit (FOM) 
as described in the subsection Analysis 1. The vertical axis denotes the 
counts per bin of the simulated dataset, with a total of 10,000 simulated 
datasets being used. The two vertical lines denote the FOM of the 
participants’ data (red/solid) and the control dataset (green/dashed).
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Analysis 3

Figure 4 shows the result of Analysis 3. The probability for the participants’ 
result to have occurred by chance (null hypothesis) is p = 0.0949, which is 
not significant using a significance threshold of p = 0.05. The probability for 
the result of the control dataset to have occurred by chance (null hypothesis) 
is p = 0.983, and thus also not significant, given that a one-sided probability 
had been specified. The observation that the control data are located on the 
right side of the distribution led to the post hoc analysis described in the 
next section.

As an additional illustration of the result of Analysis 3, we show here 
the two correlation matrices for the participants (Table 1) and control data 
(Table 2), respectively. For the 6 psychological and 5 physical variables as 
described in the subsection Analysis 3 in the section Pre-Planned Data 

Figure 3.  Result of Analysis 2 for the participants’ dataset and the control dataset 
compared to simulated data. The horizontal axis denotes a normalized 
logarithmic representation of the figure of merit (FOM) as described in the 
subsection Analysis 2. The vertical axis denotes the counts per bin of the 
simulated dataset, with a total of 10,000 simulated datasets being used. 
The two vertical lines denote the FOM of the participants’ data (red/solid) 
and the control dataset (green/dashed).
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Analysis, we have 30 correlation factors, which are converted to p-values 
here to be more illustrative.

It can be observed that Table 1 contains two significant correaltions 
with p < 0.05. Another element (EX correlated with HIT) comes close to p 
= 0.05. On the other hand, the matrix for the control data, Table 2, shows 
no element with p < 0.16, which indicates why the control data are on the 
other side of the distribution of possible results, i.e. showing particularly 
low correlations between psychological and physical variables.

Post Hoc Analysis

Analysis reported in this section has been performed post hoc and as such 
does not contribute to the statistical outcome of the pre-planned analysis.

As a post hoc analysis for Analysis 3, one can combine the results 
for the participants’ and the control data and evaluate their combined 

Figure 4. Result of Analysis 3 for the participants’ dataset and the control 
dataset compared with simulated data. The horizontal axis denotes 
a normalized logarithmic representation of the figure of merit (FOM) 
as described in the subsection Analysis 3. The vertical axis denotes the 
counts per bin of the simulated dataset, with a total of 10,000 simulated 
datasets being used. The two vertical lines denote the FOM of the 
participants’ data (red/solid) and the control dataset (green/dashed).
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TABLE 1

Matrix Arrangement of p-Values for the 30 Correlations of Participant Data 

Participant HIT ACR RUN EXC GNG

TAS
SG
SENS
TRANS
EX
MED

0.7761
0.5045
0.4911
0.8221
0.0538
0.4638

0.9046
0.6657
0.9697
0.8719
0.7237
0.2055

0.2075
0.7270
0.7347
0.4940
0.6399
0.3934

0.1703
0.3037
0.0032

0.0285

0.2527
0.1236

0.8942
0.6783
0.4220
0.6046
0.1794
0.8099

p-Values smaller than p = 0.05 are shown in bold.

significance, using a one-sided probability. In this case the prediction is 
that the participants’ data are in the direction of high correlations, and the 
control data in the direction of low correlations (i.e. p = 1 − 0.983 = 0.017 
for the control data, as pertaining to the right hand side of the distribution).

The combined probability of p = 0.0949 and p = 0.017 for uniform 
distributions on [0,1] is p = 0.012. However, while this can be called 
significant, even if this analysis had been pre-specified as Analysis 3, when 
combined with the results of Analysis 1 and Analysis 2, the combined 
p-value would still only be p = 0.082.

Two types of statistical background estimation. For the pre-defined 
analysis, 10,000 complete sets of simulated data derived from a Mersenne 
twister algorithm were used (Matsumoto & Nishimura 1998). This method 
relies on the assumption that the generation algorithm is sufficiently random 

TABLE 2

Matrix Arrangement of p-Values for the 30 Correlations of Control Data

Control HIT ACR RUN EXC GNG

TAS
SG 
SENS
TRANS 
EX 
MED

0.3136
0.8878
0.9924
0.8063
0.4275
0.6755

0.2461
0.6176
0.9899
0.5807
0.2052
0.6218

0.3898
0.6335
0.6944
0.8969
0.6907
0.9421

0.1607
0.8773
0.8277
0.4840
0.7598
0.5488

0.6942
0.3304
0.4205
0.3003
0.8595
0.9242
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for the purpose of the study. While data could also be generated with a 
hardware random number generator, the amount of required data (of order 
1011 bits to feed the Markov chain) makes this slightly non-trivial, and a 
sufficiently fast hardware RNG was not at hand. Another way to estimate 
the background distribution is to use participants’ or control data, but use 
many permutations of these with respect to the psychological data to which 
they are to be correlated. For Analysis 3 this means that the association of 
physical data (derived from the output of the RNG) is randomly permutated 
10,000 times with respect to the psychological data. This type of background 
generation has been performed for Analysis 3, using participants’ data.

The result of this permutation analysis is shown in Figure 5. The 
background distribution and the estimated probabilities are similar to the 
background distribution and probabilities from the simulated data in Figure 
4, which corroborates the result derived from simulated data, and vice versa.

Other statistics. It may be interesting to look at the data in this 
experiment in a more familiar way, at the overall hit rate over all participants.

Figure 5. Result of Analysis 3 for the participants’ dataset and the control 
dataset compared with random permutations of participant data. The 
two vertical lines denote the FOM of the participants’ data (red/solid) and 
the control dataset (green/dashed) for the appropriate permutation. The 
background distribution is similar to the one derived from simulated data 
(compare with Figure 4). The combined probability of p = 0.1185 and p = 
0.0149 for uniform distributions on [0,1] is p = 0.013.
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Table 3 shows basic statistics for the participants’ data and control data 
split by left and right intention. This is the classical way of analyzing data 
from this type of experiment. No z-score is significant for any of the 4 
datasets. It may look slightly surprising that all numbers of N1’s and N0’s are 
in the same direction. However, the author would attribute this to chance, 
since the evaluation of the random event generator yielded no deviation 
from chance expectation, as described in the Appendix section The Binary 
Random Number Generator.

Discussion

The result of Analysis 1 does not confirm the hypothesis that the distribution 
of individual results from the 20 participants would deviate significantly 
from the expected distribution under a null hypothesis. Even though the 
number of participants has been smaller by a factor of 2, compared with 
the study in Grote (2015), it seems that there is no hint of an anomalous 
distribution.

The results of Analysis 2 can hardly be further commented on. This 
analysis was exploratory in the sense of the hypotheses put forward. 
However, the analysis was strictly pre-specified.

The result of Analysis 3 is more interesting. Even though the main 
outcome is not significant with p = 0.0949, it is notable that the control 
data are located toward the right side of the distribution of the simulated 
data (see Figure 4). This means that the control data show significantly 
less correlation (between psychological and physical variables) than to 
be expected given the simulated data. While this could be interpreted as a 

TABLE 3

Basic Statistics of Experimental Data

N N
1’s

N
0’s z-score

Participant right intention 360,000 179,871 180,129 −0.745

Participant left intention 360,000 179,763 180,237   1.368

Control right intention 360,000 179,934 180,066 −0.381

Control left intention 360,000 179,790 180,210   1.212

N denotes total number of bits for each condition. N
1’s denotes the number of ‘1’ bits. N

0’s denotes the number 

of ‘0’ bits. z-Values have been calculated with Equation (1) and Equation (2). 
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chance fluctuation, it is at least noteworthy that von Lucadou proposed that 
the control data might be part of the operational closure of the system, and 
thus be part of the experiment as a whole. Von Lucadou and others have used 
the difference between experimental data and control data to estimate the 
overall significance of experiments (von Lucadou 1986, 2006, Walach et al. 
2016), thus including the control data in the analysis. However, Walach et 
al. (2016) find that their control data mostly conform to expectation values 
under a null hypothesis. In the study here, the author chose to use only 
the experimental data in comparison with the simulated data as a result of 
Analysis 3. This decision was made since it seemed more plausible to this 
author that an effect (if existent at all) would more likely show up in the 
main experimental data and not in the control data. Perhaps the fact that the 
control data of Analysis 3 is significantly shifted toward the low-correlated 
side of the distribution is yet another Trickster manifestation?

Similar to postulating a Trickster effect would be to speculate on 
experimenter-psi as a source of the observed result. See Parker and Millar 
(2014) for a more recent overview of experimenter-psi. It is interesting 
to note that in Analysis 3, a significant result only can be obtained by 
correlations across participants. There is no way an individual participant 
can ‘score high’ in this type of analysis, since each participant is only 
evaluated as part of an ensemble of participants. This fact may (or may not) 
make this type of analysis more prone to experimenter-psi.

We can note that the post hoc analysis using the difference between 
experimental and control data in Analysis 3 yields a probability to have 
occurred by chance of p = 0.012 under a null hypothesis. However, even 
when this type of analysis would have been pre-specified for Analysis 3, the 
combination of Analysis 1, Analysis 2, and Analysis 3 still only would yield 
a combined p-value of p = 0.082.

For future replications of correlation matrix experiments, the number 
of participants to be employed seems an open question for this author. 
While the study in Walach et al. (2016) employed about 300 participants, 
the study here employed 20. However the p-values for both experiments 
are comparable, of order p = 0.01 when looking for the difference between 
participant data and control data, and using simulated or permutated data to 
estimate the background. Based on this finding, one may wonder whether 
the number of participants plays an important role. Perhaps a useful measure 
for this kind of experiment could be the total interaction time between 
humans and the machine, which is different for the 2 experiments, but less 
so than the number of participants: The total interaction time for the CMM 
experiment in Walach et al. (2016) was 125 h while it was 20 h for the 
CMM experiment reported here.
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Notes

1 A Schmidt process (terminology used by W. von Lucadou) is a process 
where generated random bits are statistically independent events. In a 
Markov process, the actual random event has a non-zero statistical 
dependence on the last internal state of the Markov process. This is 
further detailed in the Appendix section The Binary  Random Number 
Generator.

2 The check-sums were generated by the device from the sum of all 
transmitted bytes modulo 256. The device would transmit this check-sum 
after a block of data had been transmitted, and the receiving computer 
compared this check-sum with the one it calculated from the received data.

3 The author is aware of possible criticism of p-values for some domains 
of research and hypothesis testing. However, p-values as used in classical 
(frequentist) statistical analysis still have their merits and reasonable 
domains of application, as pointed out by an overview article on Bayesian 
and classical hypothesis testing (Kennedy 2014).

4 Of course, in principle it may be possible to calculate the likelihood of 
the employed tests analytically; however, a Monte-Carlo approach was 
chosen here for simplicity and for better transparency of the data analysis. 
Further, the Monte-Carlo method makes it straightforward to combine 
different statistical tests and analyses that may be overlapping. The 
analytic approach would be exceedingly complex in this case. However, 
care has to be taken to assure that the random number generator used 
for the background distribution suffices for the intended usage. For the 
case here, different algorithms have been compared with no significant 
differences found in the resulting distributions relevant for this analysis. 
Another approach is to use the existing dataset with random incursion 
points (i.e. random permutations of the data) to generate the background 
distribution. This was performed for Analysis 3 and is described in the 
subsection Two types of statistical background estimation. 

5 See the subsection A strange anecdotal occurrence: Trickster at play?, 
though, for an anecdote about this testing.

6 Equation 2 is an approximation. However, since simulated data with the 
same statistic as the experimental data are used to estimate the background, 
the exact statistic used does not matter. Just counting the number of hits 
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for each participant would thus yield the same result for this analysis.
7 If both values are equal, an independent random bit is generated from 

the hardware random generator to resolve the tie. For consistency, the 
same Markov algorithm is used to generate the Monte Carlo data for the 
background distribution.

8 Upon suggestion of the current author, this type of analysis has been 
incorporated in the most recent replication of the CMM experiment, as 
reported in Walach et al. (2016).
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Appendix

The Binary Random Number Generator

The random number generator (RNG) is a hardware RNG. Figure 6 shows 
a simplified schematic of the RNG components. The hardware RNG is 
based on the differential thermal noise of two resistors. The difference of 
the resistors thermal noise voltage is amplified and fed to the input of a 
comparator, comparing the noise voltage to its time average. This yields a 
random sequence of logic high and low levels at the output of the comparator 
with close to equal distribution, but which is still sensitive, for example, to 
offset voltage drifts of the involved amplifiers, etc. Therefore, in order to 
better equalize the distribution of the data, the bit stream is fed to a frequency 
divider which toggles its logical output on the transitions from high to low 
of the comparator output. This corresponds to a frequency division by a 
factor of two, and is a technique to equalize over time the high- to low-level 
ratio of a binary signal. On average, the divider registers 65 high-to-low 
transitions of the comparator per millisecond, corresponding to an average 
count frequency of 65 kHz.

This stream of randomly alternating logic high/low levels is fed 
to a microcontroller that controls the whole experiment. Within the 
microcontroller, the random bit stream from the hardware generator is 
sampled at a frequency of 200 Hz and fed to a 16-bit long shift register at 
this frequency, such that every 5 ms a new random bit is fed into the shift 
register.

To generate one random bit (we call this bit b) for the main experiment (i.e. 
a bit to be ‘influenced’ according to the participants’ intentions), the software 
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of the microcontroller performs the following operations:

• The shift register is read out obtaining a 16-bit long word (we call it A). 
This word A is formed by the 16 random bits that have been fed 
into the shift register during the last 16 ∗ 5 ms = 80 ms. Since the 
individual 16 bits of A are random, A has a uniform distribution on 
the interval of integer numbers [0.65535].

• Word A is then compared to the 16-bit word that had been obtained in 
the previous sampling of the shift register (we call it A−1). If the 
actual word is larger than the previous one (A > A−1), a logical 
1 is the output bit, such that b = 1. If it is smaller (A < A−1), 
the output bit is a logical 0, respectively, such that b = 0.7 This 
procedure constitutes a 1-step Markov chain.

• In the last step, the value of word A is assigned to word A−1 to be used 
in the next iteration of these steps.

This procedure is executed 10 times per second, and thus, for the purpose 
of the main experiment, random bits b are generated with a rate of 10 Hz.

In the following, the bits “1” will be referred to as the “high bits” 
whereas the “0” bits will be referred to as the “low bits”. A test run of this 
RNG comprising N = 57,565,280 (57 million) bits yielded nh = 324 + N/2 
high bits, corresponding to 50.0000056% of the cases. The corresponding 
z-value is z = 0.148, as calculated with Equations (1) and (2) above in the 
Analysis 1 subsection of the Pre-Planned Data Analysis section.

The functioning of the hardware RNG was monitored automatically 
throughout the experiment. This monitoring was done by counting the 
number of high to low transitions of the random noise generator for each 
second, and requiring that a threshold number of transitions was passed. No 
error on the hardware RNG occurred during the regular experimental time 
of the participants.

Figure 6. Schematic of the binary random number generator. See text for 
description.
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Notes on the Correlation Matrix Method

A correlation matrix, as introduced by von Lucadou (1986), is simply the 
arrangement of all calculated correlation factors (or their respective p-values) 
in the form of a matrix, for the purpose of illustration. However, there are 
two questions arising about how to evaluate the matrix elements (i.e. the 
correlation factors) with respect to their combined statistical significance.

First, we need a method of how to combine the matrix elements into one 
figure of merit or combined statistic. The chosen method here, for the 30 
correlation results, takes each correlation factor into account, forming one 
quantitative outcome of all matrix elements combined, as described above. In 
contrast, the method used by Von Lucadou uses only those correlation factors 
that are above a threshold value, and counts their number of occurrences 
as the combined statistic. Both methods are similar in principle, but here 
the first method was chosen on the hypothesis it would be more suitable 
for a small number of total correlations, and may also be more sensitive 
altogether, since no matrix elements are omitted from the analysis.

Secondly, after we have established a combined figure of merit of all 
matrix elements, we need to assess the statistical significance of this figure 
of merit (the participants’ result) against an expectation value or against the 
control data. Due to the fact that at least the psychological variables, but 
perhaps also the physical variables, can be expected to correlate among each 
other, a comparison of the participants’ data with a large set of simulated 
(Monte Carlo) data (i.e. the correlations of the simulated data with the 
participants’ psychological data), or with a set of random permutations 
among psychological and physical data, seems the only way to establish a 
valid background distribution for this kind of analysis.8

Individual Participant Results from Analysis 1

TABLE 4

z-Scores of the 20 Participants for Analysis 1, Ranked by z-Score Value 

This score (as defined in the subsection Analysis 1) is a measure of how well the participants succeeded in 

‘influencing’ the galvanometer needle in the desired direction.  Also shown are the expectation values for the z-scores.

Rank

z-Score

Exp.value

1

   1.80

   1.87

2

   1.55

   1.41

3

   1.53

   1.14

4

   1.35

   0.92

5

   1.26

   0.75

6

   0.95

   0.59

7

   0.79

   0.45

8

   0.59

   0.31

9

   0.35

   0.19

10

   0.16

   0.06

Rank

z-Score

Exp.value

11

   0.16

–0.06

12

   0.16

–0.19

13

–0.02

–0.31

14

–0.24

–0.45

15

–0.27

–0.59

16

–0.44

–0.75

17

–1.24

–0.92

18

–1.59

–1.14

19

–1.95

–1.41

20

–2.94

–1.87


