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Abstract-A large body of remote human-machine interaction data has been 
collected in a protocol structurally similar to that used for experiments in re- 
mote perception, with somewhat comparable anomalous results. This sug- 
gests that the effects seen in the former could be attributable to a selection or 
sorting process on a reservoir of unperturbed data, rather than to any remote 
influence on the machine behavior per se. Fortunately, the statistical conse- 
quences of these two modalities are clearly distinguishable within the avail- 
able empirical data. When properly evaluated by Bayesian hypothesis-com- 
parison methods, the experimental results overwhelmingly favor the direct 
influence hypothesis over any selection mechanism. 

Background 

A substantial body of experiments in remote humanlmachine interaction in- 
volving various types of random event generator (REG) devices has displayed 
significant correlations between operator intentions and the mean values of 
the output distributions of the machines, despite considerable spatial separa- 
tions between operator and machine (Dunne and Jahn, 1992). These results are 
not only consistent with those produced under local conditions, but also bear 
some similarity to those of precognitive remote perception (PRP) experi- 
ments, where individuals have demonstrated a statistically significant ability 
to acquire information about locations remote in distance and time (Dunne, 
Dobyns, and Intner, 1989). 

From one point of view, the remote REG experiments could be regarded as a 
task in remote influence on the machine's behavior that automatically incorpo- 
rates a number of controls that are unavoidably lacking in the local procedure. 
For instance, the physical absence of the operator from the laboratory effec- 
tively eliminates any possibilities for operator deception, while the possibility 
of experimenter influence is precluded by the experimenters remaining blind 
to the operators' intentions until after the data are generated and recorded. 
From another perspective, the future outcome of a remote REG session, as 
recorded in a logbook and in a computer file, could be regarded as a form of 
simple PRP target in which the operator attempts to identify the highest and 
lowest of the three recorded mean values. This alternative hypothesis becomes 
more plausible in view of certain dissimilarities of results using different REG 
noise sources. While electronic diode sources display statistically significant 
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anomalous yields in both local and remote studies, the various pseudo-random 
sources show significant yields only in the remote experiments. If the remote 
interaction is driven by a remote perception effect, to which the nature of the 
noise source would be irrelevant, the presence of anomalous yield from both 
sources would be a natural result. (The contrast between remote and local per- 
formance on the pseudo-random experiments would then suggest different 
mechanisms for those effects, but that issue is beyond the scope of this paper.) 

Invoking such a selection model may seem simply to be handwaving to ex- 
plain one anomaly with another. However, these two models make sufficiently 
different statistical predictions that they can be distinguished with some confi- 
dence even on a rather modest dataset. It should be noted that this analysis is 
directed only peripherally at the issue of the existence of a real effect. The cen- 
tral question addressed is not the credibility of the effect per se, but rather the 
consistency of the effect with a particular class of mechanisms, which must be 
the first step in the production of useful theoretical models. 

Selection versus Influence 

For purposes of this discussion, the selection model denotes the hypothesis 
that the operator's efforts do not in any way affect the operation of the device, 
but that the operator is able by unspecified means to assign the three intentions 
of each experimental session in accordance with the actual values that will 
subsequently be produced. The influence model proposes in contrast that the 
behavior of the device is actually different under the various experimental in- 
tentions. In both cases the assumed target of the experiment is the mean of the 
experimental data, and the anomalous result is the deviation of that mean from 
null-hypothesis expectation. As shown in Fig. 1, the salient difference in the 
two models lies in the relationship between the mean shifts in the data and the 
relative rankings of the intentional runs. Under the selection model, the behav- 
ior of the device is undisturbed and any alteration in the mean values of, for ex- 
ample, high runs must derive from their preferential origin as the highest of 
three randomly generated values. In the influence model, the differential rank- 
ing of the high intention relative to the others is driven by, rather than driving, 
the underlying difference in distributions. 

Statistics of the Selection Model 

The theoretical distribution of run-terminal scores is essentially normal, and 
all following discussion will assume the scores have been reduced to standard 
normal deviates. Since the selection model assumes the effect to be driven by 
the assignment of intentions to the three runs of each tripolar set, the crucial 
issue is thus the distribution of the highest, lowest, and midmost of a set of 
three normally distributed values. The probability density for x drawn from a 
standard normal distribution, conditional upon x being the highest of 3 such 
draws, is: 
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Fig. 1. Exaggerated Illustration of Differences in Models. 
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are the probability density and cumulative probability distribution of the stan- 
dard normal function. The numerator of (1) is the joint probability of a value x 
appearing and of two lower values being drawn from the same distribution; the 
denominator simply normalizes the expression so that the total integral of p is 
1. Integrating the moments of (1) numerically, one finds that the highest-of- 
three distribution has the mean pH = 0.8463 and the standard deviation a,= 
0.7480. The lowest-of-three distribution by symmetry has the same standard 
deviation and opposite mean, and the middle-of-three has p,,,,= 0, uM= 0.6698. 
If these three distributions are recombined in equal proportions, one of course 
retrieves the parent standard normal distribution. (This is equivalent to saying 
that if you are required to label one of three numbers from a standard normal 
distribution as "high", but have equal probabilities of choosing the highest, 
lowest, or midmost of the three for the label, over many runs your choices of 
"high" will themselves follow a standard normal distribution.) 

The essence of the selection model is the supposition that the operator is 
able to choose the highest of the three runs to be labeled as "high," andlor the 
lowest to be labeled as "low," with some probability greater than the chance 
113. For the moment, consider only the operator's declared high intention, 
which actually turns out to be the lowest run of the three a fraction p, of the 
time, the highest run a fraction pH of the time, and on the remaining occasions, 
pM= 1 - (PH+pL), the middle run. Given the three distributions just described, it 
follows that the distribution of high runs has the mean and variance: 

These equations may be inverted to give the selection frequencies needed to 
produce a given mean and variance: 

Obviously, similar relations can be derived for the low and baseline efforts. 
It should be noted, however, that all of these equations will producep's that are 
valid probabilities only for a limited range of p and cr. No possible selection 
scheme can produce p > pH, for example. Figure 2 illustrates the region in (p, 
u) space that can be potentially accomodated by a selection model. 
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Fig. 2. Region of Possible Parameter Values for Selection Model. 

Statistics of the Influence Model 

The prior section showed how the rank frequencies pH, p,, p, for any inten- 
tion can be derived, under the selection model, from the mean and variance of 
the scores in that intention. Rank frequencies can likewise be derived for the 
influence model. If presented with three datasets whose empirical mean and 
variance estimates are m,, m,, m,, s:, si, s; respectively, the frequencies with 
which a value drawn from distribution 1 will be highest or lowest are: 

plH = p(y) .[y)  ; f (?)dX. 

plL = f-r [ I -  F [ y ) ] [ l -  F ( y ) ]  f [ y ] d x ,  

 PI^ = 1 - (PIH + P I L ) .  

Consistency Criteria 

There are two constraints on the values of the rank frequencies. The first, 
that every run (and therefore every run with a particular intentional label) must 
be assigned some rank, is automatically satisfied by the formulae given above; 
it does, however, mean that only two of the three rank frequencies for any in- 
tention need be calculated. (This ignores the possibility of ties. Ties are present 
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but infrequent in the actual data, and are most easily dealt with simply by dis- 
carding that relatively small number of tripolar sets.) The second is that every 
run, whatever its rank, must be assigned an intention, and therefore the propor- 
tions of (for example) highest-ranked runs assigned to high, low, and baseline 
intentions must also add up to one. This appears to present three more con- 
straint equations on the rank frequencies, but in fact one of them is redundant. 
Since this places a total of five constraint conditions on the nine rank frequen- 
cies, determining four of the rank frequencies will suffice to determine the en- 
tire system. The calculations detailed below fix the matrix of rank frequencies 
by computing the four values RHH (probability with which the high intention 
has the highest rank), R,  (probability that the high intention has the lowest 
rank), RLH and RLL as the key values that determine the matrix. 

A final consistency criterion applies to the normalization of the data. Since 
the selection model assumes the standard normal distribution for the source, 
the consistency constraints on the rank frequencies actually impose a condi- 
tion on the means and standard deviations of the three intentions such that, 
when they are recombined, the composite distribution must have exactly p = 
0, (T = 1. Therefore, in order to make valid rank frequency calculations in the 
selection model, the data must be normalized to their own, overall statistics 
across the three intentions (rather than to the theoretical performance of the 
machine). The influence model does not impose such a condition, since it will 
make exactly the same predictions for relative rankings regardless of what nor- 
malization is used for the raw data. 

Statistics of the Actual Data 

The remote REG database consists of 494 tripolar sets, of which 398 were 
generated using a microelectronic noise diode source and 96 using some form 
of pseudo-random device. All systems were extensively calibrated and failed 
to deviate significantly from the theoretical distribution in those calibration 
runs. Four of the experimental sets, all generated with the diode device, con- 
tain ties and are excluded; when the remaining 490 sets are normalized to their 
own collective mean and standard deviation, the results take the following 
form: 

Int. Mean Std. Dev. N Highest N Middle N Lowest 
H 0.08825 1.03035 180 167 143 
B -0.03619 0.97074 159 156 175 
L -0.05207 0.994 13 151 167 172 

Interpreting the Observation 

Using the relations developed earlier, we can construct predicted rank fre- 
quencies from the means and standard deviations of the observed data, for ei- 
ther the selection model or the influence model, for comparison with the ob- 
served rank frequencies. Since these predictions are quite different, the 
observation should provide better support for one hypothesis than the other. 
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The most straightforward way of assessing such evidential support is by an 
elementary application of Bayes' theorem of conditional probabilities. This 
asserts that the relative support an observation gives to two competing hy- 
potheses is simply the ratio of the probabilities or "likelihoods" of that obser- 
vation under each hypothesis. For each intention we are confronted with, in 
essence, a three-way choice experiment conducted n times. The three possible 
outcomes are observed n,, n,, n, times respectively (n, + n, + n, = n). The proba- 
bility of this observation under a hypothesis p, ,  p2,p3 concerning the probabili- 
ties of the individual outcomes is 

The combinatorial factor depends only on the observations, and therefore 
cancels out in the probability ratio between different hypotheses on the same 
observation. If the two hypotheses predict ( p , ,  p2,p3) and (q,, q,, q,) respective- 
ly, the ratio of relative support is 

The aggregate likelihood of the hypothesis over all three intentions may be 
calculated by repeating the individual likelihood calculation for each inten- 
tion, and the total likelihood ratio will simply be the product of factors such as 
(6) above for each of the three intentions. The above discussion could as easily 
have been framed in terms of the assignment of intentions to ranks, rather than 
of ranks to intentions; this amounts to considering the columns rather than the 
rows of the 3 x 3 rank frequency matrix first, and leads to the same final result 
for the overall odds ratio. 

A Complication 

The foregoing discussion makes a tacit assumption that in calculating the 
predictions of each hypothesis, we know the exact distribution statistics of the 
three intentions' run scores, when in fact the observation only estimates these 
parameters. Because the selection model's predictions in particular are strong- 
ly dependent on these distribution parameters, our calculation of relative sup- 
port will be erroneous if we pretend that the observed values are exact. This 
may be illustrated by considering an extreme example. Suppose that the selec- 
tion model is in fact true and that, moreover, the highest run in a tripolar set is 
being assigned to the high intention with 100% efficiency. Suppose further 
that, due to statistical fluctuations, the actual mean of the high dataset is slight- 
ly higher than its theoretical population value pH = 0.85, as will happen by 
chance about half the time. The selection model cannot accomodate so high a 
value at all, and thus has a likelihood of exactly zero regardless of the ob- 
served rank frequencies, if the observed value is taken as an exact population 
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value. Since this model is true by hypothesis, the calculation must itself be in- 
valid, and the error lies in taking the measured value as exact. 

Therefore, to complete the application of Bayesian hypothesis comparison, 
we must consider that the observation on the mean and standard deviation bf 
each intention defines a probability distribution on the population values giv- 
ing rise to the measurement. Calculating the aggregate likelihood of each hy- 
pothesis thus becomes slightly more involved. The previous section showed 
how to calculate a likelihood from a set of rank frequency observations and 
theoretical predictions. Earlier sections showed how to predict rank frequen- 
cies from distribution statistics for both selection and influence models. Taken 
together, these results give us a functional mapping from distribution statistics 
onto likelihoods for each model; that is, either the selection model or the influ- 
ence model can proceed from a set of means and standard deviations, and the 
associated rank frequency observations, to a final likelihood. 

To implement this approach, let L(ph, p,, ah,  a/)  be the function that de- 
scribes the likelihood of a set of distribution parameters given the observed 
rank frequencies. (L is of course a different function for the two hypotheses.) 
The actual distribution parameters are known only probabilistically from the 
observations. The observed value m, for the mean of the high distribution, for 
example, produces a normal likelihood distribution p(phlmh) for the actual 
value of the mean. Therefore, the overall likelihood of the hypothesis, given 
both the observed means and standard deviations and the observed rank fre- 
quencies, is 

Evaluating this four-dimensional integral is somewhat tedious, but 
amenable to standard numeric quadrature techniques. Formula (7) is expressed 
as a proportionality rather than an equation because we have not troubled with 
normalizing the assorted probabilities and likelihoods appropriately. Since we 
will be calculating this quantity twice, using the two different functions L re- 
quired by the two models, and taking the ratio, overall normalization is unim- 
portant so long as the same normalization is used for each hypothesis. 

Analysis Results and Interpretations 

In summary, the procedure for comparing the experimental support for the 
selection model versus the influence model involves three steps: 

1. Compute the probability distributions for each of the model parameters 
p,, pI, ah,  o, that follow from the corresponding observed values m,, m,, 
Sh, S/. 

2. Calculate for each model the weighted integrals (7) of the likelihoods of 
the observed rank frequencies over the range of possible model parame- 
ters. 
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3. Take the ratio of the likelihoods to determine the odds adjustment factor 
B between the two hypotheses that follows from the observation. 

When this procedure is applied to the values given in the section "Statistics 
of the Actual Data," one finds that the odds ratio is 28.9 to 1 in favor of the in- 
fluence model. In other words, given only the observation and no prior infor- 
mation concerning the relative plausibility of the two models, one would con- 
clude that the influence model is about 29 times more likely as an explanation 
of the facts than the selection model. This factor is also the numerical adjust- 
ment that would be applied to a preexisting odds ratio between the two hy- 
potheses, e.g. from prior experiments or theoretical considerations, in com- 
puting the effect of the current experiment on the overall relative credibility of 
the hypotheses. 

It should be noted that while this sort of odds ratio is not directly compara- 
ble to a traditional p-value, it is clearly imposing. Consider a simple, one-pa- 
rameter test against a null hypothesis that the parameter has a certain value, in 
which the possible measurement error is normally distributed. If a Bayesian 
hypothesis test returns odds of 28.9 in favor of the null, it is easy to show that 
the classical p-value must be no larger than p = 0.0095, and may well be con- 
siderably smaller. (This best case assumes that the alternate hypothesis is the 
"maximum likelihood hypothesis," namely that the observed value is exactly 
the actual value. Any other alternative hypothesis, to be favored over the null 
by a factor of 28.9, requires an observation such that the classical p-value is 
considerably less than 0.0095 .) 

As a check on the validity of the analysis, the procedure was repeated with 
two synthetic datasets, wherein the source of deviations between intentions 
was known by construction. In the synthetic "influence" data, a uniform mean 
shift was applied to the high intention, and an opposite one to the low inten- 
tion, of magnitude similar to that seen in the actual data. The analysis on the 
synthetic data returned an odds ratio of 3 1.4 in favor of the influence model. 
The second dataset was constructed by selection, that is, by generating random 
tripolar datasets and preferentially choosing those that were in the "right" rank 
order between intentions, again in such a way as to approximate the effect size 
seen in the actual data. The odds calculation procedure on these data produced 
odds of 0.00018 favoring influence, or in other words of 5500 to 1 in favor of 
selection. The test calculation thus appears to discriminate effectively between 
the two idealized mechanisms. Equally important, the quantitative scale of the 
odds ratio for the actual data is almost as large as for the ideal "influence" case, 
indicating that the evidence in favor of the influence model is about as strong 
as one could reasonably expect, given the size of effect and the amount of 
available data. 

Further Considerations 
It was noted in the introduction that the statistical test here used does not ad- 

dress the evidence for the existence of any effect, versus the null hypothesis 
that all differences between intentional groupings are due to statistical fluctua- 
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tion. That issue has been thoroughly addressed elsewhere (Dunne & Jahn 
1992). In fact, applying the test to datasets that, by construction, contain no ef- 
fect, yields strong odds (ranging, in a modest Monte Carlo database, from 8.5 
to over 100) in favor of the influence model. It is easy enough to see why this 
should be so. In the completely randomized Monte Carlo calculation, the dif- 
ferences between datasets are due to random fluctuations and therefore display 
the same rank-frequency character as real population differences. Since selec- 
tion is not taking place, the selection model is strongly refuted, and in the two- 
hypothesis test this manifests as evidence in favor of influence. 

It might be suspected that the exclusion of the tied datasets is in some way 
prejudicial. This has been compensated for in two ways: 

(1) In the construction of the artificial datasets above ties were discarded in 
exactly the same manner; and 

(2) an earlier analysis, in which ties were less awkward because consistency 
criteria were not taken into account, found that including the tied runs 
changed the final odds ratio by only about 10%. 

As noted above, the 490 (non-tied) tripolar runs were produced by two dif- 
ferent types of noise source, one of which is only pseudo-random. Selection 
models are superficially more appealing than influence models for the pseudo- 
random data, since it is difficult to imagine how a deterministic string of pseu- 
do-random values might be "changed." Thus, one might expect that in the 
pseudo-random data, at least, the observation would favor the selection 
model. However, this proves not to be the case. If the data are separated into 
subsets according to whether their source was a noise diode or a pseudo- 
random mechanism, we find: 

(1) The diode source data produce odds of 25.6 to one in favor of influence. 
The slight reduction in strength of evidence is entirely attributable to the 
reduced amount of data. 

(2) The pseudo-random data produce odds of 6.3 to one in favor of influ- 
ence. Here the dataset is much smaller, so that strong statistical conclu- 
sions are not to be expected; nonetheless the evidence seems to show 
modest preference for the influence model. 

Conclusions 

The analysis described above thus allows some general conclusions: 

1. Despite its conceptual appeal, the selection model is a considerably 
poorer predictor of the data structure than the influence model. 

2. This remains true for either type of noise source, despite the fact that the 
selection model might seem more natural for the pseudo-random source 
than an influence model. 

3. Since the selection model addresses phenomenology rather than mecha- 
nisms, evidence against it is evidence against any predictive, perceptual, 
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or data-sorting model of remote human-machine anomalies. It is also ev- 
idence against deception or failure of controls in the remote protocol; if 
the effect were due to accidental or deliberate cuing of operators, or to 
any other protocol failure that allowed them knowledge of the run re- 
sults before their intentions were recorded, the output would necessarily 
show the statistical character of a selection model. 

We thus conclude that whatever the operators are doing, they are not simply 
sorting the undisturbed output of the device into intentional "bins." Nor are 
they, by accident, chicanery, or anomalous means, finding out the values of ex- 
isting runs and choosing the intentions to suit. Rather, in so far as the evidence 
allows us to judge, the mean output level of the device is genuinely, albeit 
slightly, different from one operator intention to another. Any explanatory 
model for the apparent anomaly must take this fact into account as its starting 
point. 
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