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Engineering Anomalies Resear ch

R. G. JaHN, B. J. DUNNE, and R. D. NELSON
School of Engineering/Applied Science. Princeton University, Princeton, NJ 08544

Abstract — Anomalous consciousness-related phenomena of possible rele-
vanceto basic physica science and modern engineering practice are addressed
experimentally and theoretically in an effort to identify thosedevices, systems,
and processes most likely to display operator-related anomalies in their per-
formance, and to illuminate the characteristicsof such aberrations. Three
interrelated sectors of effort are pursued: the design, implementation, oper-
ation, and interpretation of experimentsin low-level psychokiness; the de-
velopment of analytical methodologiesfor quantitative assessment of pre-
cognitiveremote perception data; and the devel opment of theoretical models
useful for correlation of the experimental data, design of better experiments,
and explication of the phenomena on fundamental grounds.

The primary effect observed in the psychokinesisexperimentsisa marginal
but replicable shift of the mean of output count distributions with respect to
empirical basdinesor theoretica expectations, with no discernible alterations
in any higher moments. Over large data bases, these mean shiftscan com-
pound with considerable statistical regularity to high leves of significance,
depending on the particular operator, the direction of effort, and other pre-
vailing experimental conditions. In many cases, individual operator "'sg-
natures™ of achievement are found to transfer across various experimental
devices, including some driven by deterministic pseudo-random sources.

Quantitativeanalysisof a large data base of remote perception experiments
reveals similar departures from chance expectation of the degree of target
information acquired by anomal ous means. Digital scoring techniques based
on aspectrum of 30 binary descriptors, applied to all targetsand perceptions
in the experimental pool, consistently indicate acquisition of substantial top-
ical and impressionistic information about remote geographical locations
inaccessible by known sensory channels. The degree of such anomalous in-
formation acquisition appears independent of the spatial separation of the
percipient from the target, up to global distances, and also independent of
the temporal separation of the perception effort from the time of target spec-
ification by the agent, up to periods of precognition or retrocognition of
severa days.

In an attempt to illuminate these empirical results, a theoretical model
hasbeen proposed that invokes quantum mechanical metaphors to describe
the interaction of consciousnesswith itsenvironment. By representing con-
sciousness by quantum mechanical wave functionsand its physical environ-
ment by appropriate potential energy profiles, Schrodinger wave mechanics
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may be used to define eigenfunctionsand eigenvaluesindicative of psycho-
logical and physical experience, both normal and anomalous, in aform ap-
plicableto the experimental designs.

The experimental resultsin hand, along with the generic predictions of
the theoretical model, suggest numerous short and longer term practical ap-
plications of the phenomena, and raise basic issues about the role of con-
sciousnessin the establishment of redlity.

Introduction

Scholarly research into a broad range of anomalous consciousness-related
phenomenaover the past century has produced an array of provocativeresults,
but none that can be regarded as fully convincingin the traditional scientific
sense. Nor hasthisresearch yielded sufficient empirical correlationsto support
any existing category of theoretical model for description and comprehension
of such effects, let aloneto refinesuch modelsto functional utility. Neverthe-
less, the potential implications for many fieldsof human endeavor are suffi-
ciently profound and pervasivethat effortsfor demonstration and resolution
continue in severa disciplines. Among these, the variousfieldsof engineering
scienceare neither immune from theimplications nor impotent to contribute
to the search. Throughout its three major domains of modern activity —the
processing of energy, of materials, and of information— engineering engages
amultitudeof physica devices, systems, and situationsthat may be potentially
vulnerableto such anomal ousinteractions. In particular, thoseinvolving sen-
sitive man/machine interfaces, low-leve signal processing units of the micro-
processor genre, elaborate data-storage systems, devices utilizing random or
pseudo-random noise sources, and very large-scale integrated circuits would
seem to merit attention.

The research reported herein consists of three components, conceptually
distinct, but in practice interrelated. The firgt is an ensemble of experiments
in low-levd psychokinesis—the interactionof human consciousnesswith some
physical device, system, or process resulting in statistical behavior different
from that expected on the basisof known science. The second addressesthe
process of precognitive remote perception—the acquisition of information
about geographical targets remote in distance and time and inaccessible by
any known sensory means. The primary interest here is the development of
analytical methodologiesfor quantitative determination of the degree of in-
formation obtained by such processes. Thethird segmentisan effort to devel op
a theoretical mode to support the experimental program and provide some
insight into the basic nature of the phenomena.

Particular experiments have been selected for their immediate and longer
term relevance to the practice of modern engineering science, and for their
amenability to controlled and systematic laboratory study. Physical and tech-
nical parametersare the primary concern throughout; systematicinvestigation
of psychological or physiological correlates is secondary to the accumulation
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of very large data bases by a relatively small number of participants. All op-
erators are anonymous volunteers, none of whom claimsextraordinary abil-
ities, and no screening, training, or induction techniques are employed.

| Psychokinetic I nteractionsWith Random Physical Systems

\ The several experimentsin low-level psychokinesis(PK), although diverse
in character and scae, al embody some type of random physical process
whose distribution is established empirically and, when possible, theoretically.
Various human operators then attempt to distort those distributions in pre-
stated directions. To guidethem in that task, each experiment provides some
form of feedback, usually a visua display, that tracksthe degree of shift from
the baseline distribution.

One such experiment belongsto agenreof random event generators(REG)
widely used in contemporary studies of this class of phenomena (Krippner,
1977; Radin, May, & Thomson, 1985; Schmidt, 1970; Stanford, 1977). The
particular device employed in this program is based upon a commercial mi-
croel ectronic noise source whose output istranscribed by appropriate circuitry
into arandom train of positiveand negative pul ses, suitablefor sampling and
counting[Fig. 1(a)]. For most formal experiments, thedeviceisset to generate
"trials" of 200 pulses each at a rate of 1000 per second, and to count and
display the number of those pulses which conform to the regular aternation:
+ -, +, -, +, —, etc. Variousdisplay and recording units show the operator
the results of the counting and insert them on-lineinto adigital database and
computational system.

Figure 1(b) shows the experimental arrangement as seen by the operator,
whositsafew feet from the deviceand itssupporting equipment, for example,
acomputer terminal, a strip printer, and variousfail-safe counters that guar-
antee theintegrity of the data. The operator attemptsto influencethe process
to produce a higher number of counts (PK*) or a lower number of counts
(PK"), or to generate a baseline (BL ), in accordance with pre-recorded inten-
tions. In the protocol followed for the largest subset of our data base, dataare
generated in*runs' of 50trials, accumulated in**sessons” comprisinga min-
imum of five runs. While session lengths are Ieft to the preference of the
operator, a complete experimental "series” requiresa full 7500 trials, or 50
runsin each of the three directions of intention. (A few early seriesconsisted
of 5000 trials, or 100 runs per intention.) To preclude any artifactual bias,
the protocol requiresthe operator tointerspersesequencesof each of thethree
intentions, PK*, PK~, and BL, with all other experimental conditions held
constant.

An example of the type of data obtained in this experiment is shown in
Fig. 2(a) as a distribution of scores for some 5000 basdline trials (i.e., one
million pulses, or bits) taken by one operator, superimposed on the theoretical
Gaussian approximation to the appropriate binomial statistics. With reference




24 R. G. Jahn et al.

[N —— S

i

|

| — .
PRECISION | | [LOW o DISPLAYS
PRE PAGS AMP oL AP SAMPLER SEECTOR LT COUNTER b
ameLFER | 1 |[FuTER GATE LT e

| 3

i

i

J

ELGENGO
NOISE SOURCE
# 3602415124

(@) REG FUNCTIONAL BLOCK DIAGRAM

(b, REG EXPERIMENTAL ARRANGEMENT

Fig. 1. Random Event Generator.

to"'re same theoretical distribution, Fig. 2(b) displays the results of the same
operator's efforts to shift this distribution toward higher or lower numbers of
countsover the same number of PK* and PK trials, and Fig. 2(c) showsthe
best Gaussian fits to these data. The effects found in this experiment are
usually confined to such marginal shifts of the mean of the distribution, with
no perceptible changes in the standard deviation, higher moments, or other
charactenstics of the distribution.
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To track the consistency of these small shifts of the mean and to display
their statistical significanceasa function of the data base size, the accumul ated
deviation of the counts from the chance mean are graphed as a function of
the number of trials processed. Figure 3 employs the same data as Fig. 2, in
such cumulativedeviation plotsfor each of the threeintentions of the operator
relative to the theoretical mean. All three experimental traces display the
stochastic variationsto be expected in thissort of random process, but whereas
the baseline curve meanderscloseto the theoretical expectation, the PK* and
PK™ tracesdisplay almost linear systematic deviations from the chance mean
that compound to progressively larger values as the number of trials accu-
mulates. The dashed parabolas are the loci of the five percent chance expec-
tation of reaching that accumulated deviation at that number of trias, and
the scaleat the right indicates the range of terminal chance probabilities. The
terminal valuesaof the meansof thesePK* and PK ™ data, 100.264 and 99.509
respectively, differ from chance expectation by several standard error units,
with the composite achievement unlikely by chance to the order of 107°.

Such cumulative deviation graphs are found to be quite operator specific
and hence are referred to as ' signatures.” Figure 4 shows such signaturesfor
a few of the many other operators working on this same experiment. Some
operators achieve PK resultsin only one direction, some in neither, somein
both, and someshow inverted results. The PK* and PK™ achievement patterns
for a given operator are typically asymmetrical, and are often found to be
dependent on the conditions under which the operator is performing the
experiment, such as the pulse counting rate, whether each trial in the run is
initiated manually or automatically, or whether the operator chooses or is
randomly assigned the direction of effort. For example, Fig. 5 displays the
sensitivity of one operator's performance to the' volitional" and " instructed™
modes of data generation. In the volitional mode, the operator chooses the
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direction of effort and completesfiveruns(250trials),or somemultiplether eof,
before changing the intention. In the instructed mode, a random number
generated beforeeach run assignsthe direction of effort. Note that in the case
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shown, the PK* and PK~ results are essentially reversed, that is, thosein the
instructed mode are opposite to the operator's intention. A complete graphi-
cal and datistical compendium of operator signaturesand their dependence
on such parametersis available in a technical report (Nelson, Dunne &
Jahn, 1984).

Despite these variations in individual operator performance and in their
secondary dependenceon experimental conditions, the overdl REG data base
dso displays a significant statistical trend. Figure 6 and Table 1 show the
combined results of the entire formal data base, comprising 87 completed
series, and totalling over 250,000 trials per intention (>150 million bits).
These datawere generated by 33 different operatorson two different machines
over a period of approximately seven years. Again, the grand baseline mean
remains close to the theoretical value, and the PK* and PK™ data, despite
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occasional reversalsassociated with particular operatorsand conditions, trend
toward increasingly significant deviations in their stated directions. The
probability of the indicated overal result occurring by chance is less than
2X 1074

Other ingtructive features of the overal REG data base appear in the dis-
tribution of terminal scoresof the complete series. For example, Fig. 7 shows
histograms and analytical fits of all 87 series z-scores for PK*, PK™, and
basdline efforts. While the mean values of these three distributionsare con-
sistent with the terminal vaues of the cumulative deviation traces of Fig. 6,
it isnotablethat thedistributionsof the PK* and PK ™~ seriesscoresboth have
larger than expected variances, at significanceleves of 0.06 (PK*) and 0.01
(PK"). Conversely, the distribution of basdine series scores is substantially
compacted around the theoretical mean and totally devoid of any scoresout-
sde of the one-tailed significance criterion, z > *+1.645. The corresponding
reduction in the variance of the basdline score distribution is significant at p
= 0.01. Recalling that basdline data are generated under conditionsidentical
to the PK series, save for the absence of a stated directional intention on the
part of the operator, oneisled to hypothesizethat aconsciousor unconscious
motivation to achieve a ""'good”" basdline may actually produce a third PK
condition that entailsan anomal ous constriction of the distribution of scores.
Thisissue isdiscussedin greater detail in a technical report (Jahn, Nelson, &
Dunne, 1985).

Experimentssuch as these inevitably raise the question of the focus of the
interaction between the consciousnessof the operator and the machine. In
particular, it is reasonableto ask whether the physical behavior of the noise
source itself is affected during the PK efforts, and if so, in what way. One
obvious strategy for addressing this question is to replace the source unit by
other elements and compare results. Several similar microelectronic noise




TABLE !
REG data summary by operator
PK* PK~
# # #Series # Series # # Series  # Series
Opr. Seies Trias Mean z-Score  Prob* p < .05* p<.5 Trials Mean z-Score  Prob.* p <.05* p<.J3

10 1S 55,100  100.082 2.729 .003 3 12 55,050 99.896 —3.459 3x10°* 4(1) 13
14 3 8,000 100.070 0.885 .188 1 2 7,800 99.872  —1.603 .054 1 3
16 3 7,500 100.070 0.856 196 — 2 7,500 99.763  —2.903 .002 1 3
19 1 2,950 100.030 0.232 .408 — | 2,800 100.042 0.313 (.377) — —
20 3 7,550  100.087 1.064 .144 —_ 2 7.450 99.979  —0.262 .397 — 2
21 1 2,700 100.044 0.321 374 — 1 2,300 100.156 1.056 (.146) — —
29 1 2,500 99912 —0.625 (.266) — — 2,500  100.046 0.322 (.374) — —
30 2 5,000 100.026 0.262 .397 — 1 5,000 99.939  —0.606 272 — 2
33 1 4,000 99.868 —1.178 (.119) — —_ 2,500 99.928 —-0.512 304 —

36 2 5,000 99.978  —0.218 (.414) — 1 5,250  100.068 0.695 (.244) —

41 5 13,450  100.023 0.373 .355 —_ 3 15,050 99.984 —0.273 392 — (1)

42 1 2,700  100.094 0.691 .245 — 1 2,300 100.031 0.212 (.416) — —
44 2 5,300 99.781  —2.255 (.012) — (1) — 6,200 99.918 -0.914 .180 — 2
49 2 4950  99.871  —1.284 (.099) —_ — 5,050  100.072 0.722 (.235) — 1
53 3 7,550  99.937  -0.778 (.218) —(1) 1 7,450 99.981 —0.236 407 — 2
55 13 43,300 100.018 0.544 293 2(1) 7 43,400 100.028 0.818 (.207) — (1) 5
59 2 5,100 100.046 0.461 322 — 1 3,900 99.923  —0.684 247 — 2
64 2 5,500  99.940 —0.625 (.266) — 1 4,500 100.042 0.403 (.344) — I
65 1 2,600 100.207 1.489 .068 — 1 2,400 99.956 —0.303 .381 — 1
66 2 7,950 100.003 0.041 484 — 1 7,050 99.930 —0.830 .203 — t
68 1 4,650  99.955 —0.429 (.334) —_ — 5,350  100.005 0.048 (.481) — —
70 3 7,700 99.963 —0.459 (.323) —_— 1 7,300 99.922  —0.940 174 — 2
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Table 1 (continued)

PK* PK~
# # #Series  # Series # #Saies  # Seies

Opr. Series  Trials Mean z-Score  Prob* p < .05* p<.5 Trials Mean z-Score  Prob.* p < .05* p<.5
80 2 7,500 100.185 2.272 012 1 1 7,500 90871 -1.581 .057 1 2

82 2 4,100 100.193 1.745 041 1 2 5,250 100.060 0.615 (.269) — —

84 1 2500 100.102 0.724 235 — 1 2,500 99.765 -1.663 .048 1 1

85 1 5100 100.088 0.891 .186 — 1 5300 100.180 1851 (.032) — 1
.88 1 2,750 100.169 1.254 .105 — 1 3,000 100.084 0.648 (.258) - —

20 1 2,500 100.088 0.619 .268 — 1 2,500 90968 —-0.229 .409 _ 1

92 2 7,400 99.941 -0.722 (.235) 1(1) 1 5400 100.087 0.903 (.183) - 1

93 2 5000 100.144 1.440 075 — 2 5,000 100.019 0.194 (.423) — 1
94 4 10,000  100.056 0.796 213 1 2 10,000 99939 -0.863 194 _ 3

96 1 2,250 100.073 0.492 311 — 1 2,750 100.085 0.634 (.263) — —

97 1 2,500 100.110 0.781 218 — 1 2,500 99935 -0461 322 1

All 87 262,650 100.037 2.666 004 10 (4) 53 259,800 99.966 —-2.444 .007 8(5) 56

Basdine APK
# Series
# # Series Mean # # Series # Series

Opr.  Seriest* |, Trias Mean z-Score Prob. p <.05 > 100 Trials z-Score Prob.* p < .05* p<.5
10 13 59,100 100.011 0.389 349 — 8 110,150 4.375 6% 107 4 14
14 3 7,250 99.936 -0.774 219 — 1 15,800 1.756 .040 — 3
16 3 7,500 100.024 0.292 .385 — 1 15,000 2.658 .004 1 3
19 | 2,500 100.044 0.311 378 — 1 5,750 -0.052 (.479) — —
20 3 7,500 99.956 -0.537 296 — 0 15,000 0.940 174 — 3
21 1 2,500 100.032 0.229 409 — 1 5,000 —0.480 (.316) — —
29 1 2,500 100.076 0.540 295 — 1 5,000 -0.670 (.251) — —
30 1 2,650 99.978 —0.162 436 — 0 10,000 0.614 270 — 1
33 1 2,500 100.053 0.376 353 — 1 6,500 —0.607 (.272) —_ —
36 2 4,500 99.928 -0.679 .249 — 1 10,250 -0.650 (.258) — —
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Table | (continued)

Basdine APK
# Series
# # # Series Mean # # Series # Series

Opr.  Series** Trids Mean z-Score Prob. p<.05 > 100 Trials z-Score Prob.* p <.05* p<.5

41 3 9,800  100.012 0.166 434 — I 28,500 0.455 .325 —_ 4

12 i 2,500 99.964 —-0.255 400 — 0 5,000 0.364 358 — 1

44 2 3,000 99.982 -0.137 446 — 1 11,500 —-0.860 (.195) — —

49 2 5000 100.078 0.784 217 — 2 10,000 -1417 (.078) — (1) —

53 3 7,500 99.961 -0477 317 — 2 15,000 —-0.386 (.350) — (1) 2

55 10 40,000  100.004 0113 A55 — 6 86,700 -0.1% (.423) (1) 6

59 1 1,100 100119 0.559 .288 — 1 9,000 0.798 213 — 2

64 1 5,500 99.908 —0.965 167 — 0 10,000 -0.734 (.232) — — ~
65 1 2500 100.172 1213 112 _— 1 5,000 1284 .100 - 1 Q
66 2 7,500 99.964 —0.444 .328 — 1 15,000 0.599 275 — 1 s
68 | 4,950 100.158 1572 .058 — 1 10,000 -0.328 (.371 — — =
70 3 7,500  100.081 0.998 159 — 2 15,000 0.327 372 — 2 2
80 2 5500  100.160 1676 .047 — 2 15,000 2724 .003 1 1 o
82 1 5000  100.014 0.144 443 — 1 9,350 0.695 244 — 2 £
84 1 2500  100.092 0.653 257 — | 5,000 1688 046 1 |

85 l 5550  100.107 1.129 129 - | 10,400 —0.698 (.243) — -

88 1 2,900 99.915 —0.649 .258 — 0 5,750 0.399 345 — 1

0 t 2,500 99.820 -1.270 .102 — 0 5,000 0.600 274 — 1

92 2 4,950 99.900 -0.997 159 — 0 12,800 -1135 (.128) 1(1) 1

93 2 5,000 99.827 -1730 .042 — 0 10,000 0.881 .189 — 2

94 4 9,500 99.961 -0.543 294 — 2 20,000 1173 120 | 3

96 1 2,500 99.914 -0.611 271 — 0 5,000 —-0.140 (.444) — —

97 1 2,500 100.104 0.735 231 _ 1 5,000 0.878 .190 — |

All 76 243750  100.004 0.282 .389 — 41 522,450 3.614 2x 107 10 (4) 56

* Numbers in parentheses indicate resultsopposite to intention.
** In some early series baselines were generated by experimenters, and these are not included in the table.
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units have indeed been so employed, with no discernible consequences on
the overall pattern of data.

In an attempt to explorethi sissue more aggressvely, a categoricaly different
random source has been developed that may properly be termed ™ pseudo-
random' in character. Thisdevice employsafeedback array of 31 microelec-
tronic shift regigers that produces a determinate repeating sequence of 2
X 10° bitsat a set clock frequency. In the mode most commonly employed,
this determinate sequence cycles continuously with a repetition period of
about 60 hours, s0 that the only remaining non-deterministic aspect of the
experiment is the time of incursion initiated by the operator. This pseudo-
random source can be switched into the standard REG apparatus at an ap-
propriatelocation, replacing the commercial microelectronicnoise diodeand
its conditioning circuitry but leaving all subsequent sampling, counting, and
display circuitry, feedback, and software identical to the standard version.
From the perspectiveof theoperator, thissysem isvirtua ly indistinguishable
from that of the standard REG, save for an identifying code printed on the
strip tape, and the experimental protocolsemployed areidentical. The results
of 29 experimental seriesemploying this pseudo-random source are aso sta-
tigticaly significant with a probability againgt chance of .003, (Fig. 8 and
Table 2), and theindividual operator signaturesshow strong qualitativesm-
ilaritiesto those achieved on the standard REG.

To pursue further the question of how device-specificare such signatures
of achievement,asubgtantidly differentexperimental devicecdled a™ Random
Mechanical Cascade’™ (RMC) has been employed (Nelson, Dunne, & Jahn,
1987). Thisapparatus, some6 X 10'in dimension, alows 9,000 3” polystyrene
spheres to trickle downward through a quincunx array of 330 2” diameter
nylon pegs, whereby they are scattered into 19 collecting bins across the bot-
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Fig. 8. Pseudo-REG cummulative deviations from theoretical mean: All data, 10 operators.
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TABLE 2
Pseudo-REG data summary by operator

# Series # Series
# Trials Mean Prob. p<.05 p<.5
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tom, filling them in close approximation to a Gaussian distribution (Fig. 9).
The growing population of each of the binsis tracked photoelectrically and
displayed via LED counters at the bottom of that bin, and recorded on-line
in an appropriately coded computer file. T'he experimental protocol calls for
the operator, scaled on a couch approximately eight feet from the machine,
to attempt on volition Or instruction to distort the distribution to the right

L SR IR0 R0 BER B78 BN B4 2BY 18) B84 050

Fig. 9. Random mechanical cascade.
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(PK*) or to the left (PK™), or to generate baselines. All data are acquired in
concomitant setsof three runs, one under each of theseintentions, to control
against unforeseen artifactual influences. The temperature and humidity
within the RM C apparatus are routinely recorded to assess any possible cor-
relationswith the experimental data.

Figure 10(a) displaysas cumulative deviations the data of al 3072 runs by
the 22 operators who have completed at least one formal seriesof 10 or 20
runs per intention. Once again, the total aberration is statistically significant,
to the order of 3 X 107, but in this case only the left-going effortsare inde-
pendently significant. As can be seen in Table 3, most of this asymmetry is
due to the characteristic contributions of two operators who happen to have
exceptionaly large individual data bases. With these two omitted, the com-
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Fig. 10. RMC cumulativedeviationsfrom fitted basdine mean: (a) All data, 22 operators, (b) All
data, 20 operators.
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TABLE 3
RMC data summary by operator
#
# # BL t- # Series  Series
Opr. Series Runs  mean Mean D* Score* Prob. p<.05 p<.5
PK* (right)
10 17 270 10.0328 10.0297 0508 —0.987  (.162)  —(2) 6
14 1 20 10.0336 10.0284 .0497 —.0472 (.321) — —
16 3 30 10.0111 10.0246 .0496 1.497 073 — 3
20 2 20  10.0002 10.0226 .0505 1.975 031 1 2
41 7 90 10.0205 10.0240 .0533 0.620 .268 — 4
42 3 30 99913 10.0181 .0452 3.248 .001 1 3
44 | 20 10.0419 10.0361 .0457 —0.571 (.287) — —
49 1 10 10.0219 10.0291 .0462 0.488 319 — 1
51 | 10 10.0047 10.0066 .0456 0.133 448 — 1
53 1 10 10.0283 10.0214 0682 —0.321 (.378) — —
55 20 300 10.0272  10.0283 .0497 0.374 354 2(1) 11
63 | 7 10.0207 10.0342 .0458 0.782 232 — 1
64 1 10 10.0164 10.0219 .0476 0.364 .362 — 1
66 | 10 10.0210 9.9907 .0306 —3.142 (.006) — (1) —
68 2 40 10.0224 10.0180 .0453 —0.608 (.273) — 1
69 1 11 10.0463 10.0253 .0679 —1.023 (.165) — —
70 4 40 10.0166 10.0278 .0541 1.310 .099 — 4
79 1 9 10.0214 10.0448 .0649 1.079 156 — 1
84 | 10 10.0237 10.0348 .0376 0.937 .187 —_ 1
91 1 16 10.0290 10.0325 .0462 0.306 .382 — |
93 3 31 10.0142 10.0219 .0492 0.875 .194 — 2
94 3 30 10.0041 9.9977 .0557 —0.636 (.265) — (1) 2
All 76 1024 10.0245 10.0260 .0506 0.978 .164 4 (5) 45
PK~ (left)

10 17 270 10.0328 10.0195 0536 —4.076 3 X 1073 6 14
14 1 20  10.0336 10.0259 .0418 —0.822 211 — 1
16 3 30 10.0111 9.9994 0507 —1.256 110 1 2
20 2 20  10.0002 10.0259 .0448 2.566 (.009) — (1) —_
41 7 90 10.0205 10.0241 .0488 0.697 (.244) — 3
42 3 30 99913 9.9990 .0502 0.838 (.204) — —
44 1 20 10.0419 © 10.0342 .0484 —0.713 242 — 1
49 | 10 10.0219 10.0212 .0369 —0.058 478 — t
51 1 10 10.0047 10.0002 .0322 —0.436 337 — 1
53 | 10 10.0283 . 10.0195 .0632 -0.444 334 — 1
55 20 300 10.0272  10.0244 0494 —0.985 163 1 13
63 1 7 10.0207 10.0126 .0391 —0.550 301 — 1
64 1 10 10.0164 10.0241 .0506 0.482 (.321) — —
66 1 10 10.0210 10.0017 .0590 —1.038 163 — 1
68 2 40 10.0224 10.0221 .0469 —0.031 .488 1(1) 1
69 1 11 10.0463 100121 0680 —1.664 064 —_ 1
70 4 40 10.0166 10.0122 .0454 —0.627 267 —_ 2
79 | 9 10.0214 10.0329 .0394 0.872 (.204) — —_
84 1 10 10.0237 10.0175 .0516 —0.375 358 — 1
91 | 16 10.0290 10.0395 .0566 0.743 (.235) — —
93 3 31 100142 100045 .0440 —1.221 116 —_ 2
94 3 30 10.0041 9.9841 .0467 —2.350 013 1 3
All 76 1024 10.0245 10.0190 .0503 —3.473 3X10™* 10 (2) 49

R TIII—=
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Table 3 (continued)

#
# # BL # Pairs # Series  Series
Opr. Series Runs  mean of runs SD*  t-Score* Prob. p<05 p<.5

APK (right-left)**

10 17 270 100328 270 0521 3235 IX10™*  7(1) 1
14 1 20 10.0336 20 0402 0270  .395 — 1
16 3 30 100111 30 .0515  2.683 006 1 3
20 2 20 10.0002 20 0328 0461 (3250 —(1) 1
41 7 90  10.0205 90  .0530 0018  (493) —(I) 3
42 3 30 9.9913 30 0432 2427 011 1 3
44 1 20 10.0419 20 0531  0.158 438 — 1
49 1 10 10.0219 10 0375 065 263 — 1
51 1 10 10.0047 10 0307 0655 264 — 1
53 1 10 10.0283 10 0288 0214 418 — 1
55 20 300 10.0272 300 0490 1373 .085 2 13
63 1 7 10.0207 7 .0358 1600  .080 — 1
64 1 10 100164 10 0523 —0.134  (448) — —
66 1 10 10.0210 10 0478 —0.728  (243) — —
68 2 40 10.0224 40 0511 —0510  (306) — 1
69 1 11 10.0463 11 0359 1218  .126 — 1
70 4 40 10.0166 40 0463 2,143 019 2 3
79 1 9 10.0214 9 0666 0535  .303 — 1
84 1 10 10.0237 10 0566 0965  .180 — 1
91 1 16 10.0290 16 0383 0729 (239) — —
93 3 31 10.0142 31 0466 2075 023 — 3
94 3 30 10.0041 30 0462 1.606  .060 — 3
All 76 1024 10.0245 1024 0489 4581 3x10° 13(3) 53

* The t-score calculation for paired data replacesthe usual z-scorein these experiments, since
an empirical baselinedistribution is used asa referencein lieu of a theoretical distribution. For
this calculation an empirical standard deviation (SD) of the differences of the means is aso
required.

* The APK t-scoreis calculated for the difference between the PK* and PK™ data, unlike the
REG data where APK reflectsthe combined effect in direction of intention.

bined results of the remaining 20 operators are more symmetrical and till
significant to the order of 7 X 107* [Fig. 10(b)].

Perhapsmoreimportantly, the RMC resultsindicate operator-specific pat-
terns of achievement similar to those found in the REG and pseudo-REG
experiments, despite the widdy different physical processesthese three devices
embody, a featurethat may bear substantial implications for basic compre-
hension of the phenomenainvolved. For example, Fig. 11 comparesthe PK*
and PK~ signatures of the same operator on dl three PK experiments: the
microelectonic REG, the deterministic pseudo-REG, and the macroscopic
mechanical RMC. Each of these graphs representsa concatenation of a sub-
stantial number of experimental series conducted over long periods of time.
Similar correspondenceshave been observed for a number of other operators,
despitetheir characterigtically different individual signatures. Thusit appears
that although the observed effects are clearly operator-specific, and in many
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cases condition-specific, they seem not to be nearly so device-specific. Such
empirical evidenceweakensphenomenol ogical interpretationsinvolvingcon-
sciousness interacting directly with the random physical process itself, for
example, with the flux of thermal electronsin the REG, or of the polystyrene
balsin the RMC, and favors modelsthat dea with aspectsgenericto all of
these systems, for example, the information implicit in their output distri-
butions.

Precognitive Remote Per ception

The second major class of experimentation concerns the anomal ous ac-
quisition of information about remote geographical targets, inaccessible by
any known sensory channel. The particular protocol followed is a variation
on numerous similar studies elsewhere (Dunne & Bisaha, 1979; Hansen,
Schlitz, & Tart, 1983; Puthoff & Targ, 1976; Schlitz & Gruber, 1980; Tart,
Puthoff, & Targ, 1979), and istermed precognitive remote perception (PRP).
Essentialy, one participant, called the “percipient,” is asked to generate a
description of an unknown location where a second participant, called the
"agent" is, was, or will be situated at a prescribed time. Initially the percipient
records his impressions about the target in a free-response, stream-of-con-
sciousness style, and then encodes them in some structured form amenable
to analytical processing.

Most of the experiments reported here were conducted in a precognitive
mode, wherein the percipient's impressions are recorded before the agent
vidts the target and, in many cases, before the target is even selected. Two
modes of target selection have been employed, with no discernible effect on
the experimental results. In the "instructed™ mode, the target for each ex-
periment israndomly selectedfrom alarge pool of potential targetspreviously
prepared by a third person not otherwise involved in the experiment or its
evauation, and maintained so that no percipient or agent hasaccesstoit. In
the ""volitiona mode, the target is arbitrarily selected by the agent at the
time specified for its visitation.

Figures 12-14 show a few examplesof typical targetswith portions of the
corresponding free-response descriptions; more extensive data are presented
elsawhere (Dunne, Jahn, & Nelson, 1983; Dunne, Jahn, & Nelson, 1985;
Jahn, 1982; Jahn & Dunne, 1986, 1987; Nelson, Jahn, & Dunne, 1986). At
present, the data in hand consist of 334 perceptions of this sort that range
from virtually photographic accuracy, through varying degreesof correspon-
dence to the details and overall ambience of the scene, to total irrelevance.
In some cases, details that are central to the agent's view of the scene are
ignored by the percipient, while minor aspects are escalated in importance.
In other cases, there are spatial inversions or other geometrical distortions.
Frequently, the more impressionistic aspects seem to be perceived more ac-
curately than the analytical details.
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g 1< PRI Targer vWRR station, Glencoe, liinois [ he peraipient was some five o1 six mies
away The perception, generated 35 minutes precognitively, reads, in part.
“. . .l seeatrain station, one of the commuter train stations that’s on the expressway
I see a train coming . See just the front end of the train station. See a little bit
within it. I think there are wooden planks on the floor. | hear like the clicking . of
feet or shoes on the wooden floor . . . There are posters or something up, some kind of
advertisernents or posterson the wall in the train station. | see the benches. Getting the
image of a sign, but | think it’s probably the sign of what station 1t 1s It’s about 8 or 10
letters in the word. Maybe something like Clydeburn or Clayburn Have the impression
of this wooden floor being somewhat littered, just sort of dirty I seethetracks. No train
on the tracks right now Empty tracks.
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Fig. 13. PKP Target: Ruins of Urquardt Castle, [ och Ness, Scotland. The percipient wasin New
York City, some 3500 miles away The perception, generated 14 hours retrocognitively,
reads:

"""Rocks with uneven holes Also smoothness. Height Ocean. Dark. Dark blue. White
caps. Wavesbooming against rocks? On mountain or high rocks overlooking water. Dark
green in drstance. Gulls flying? Pelican on a post. Sand A lighthouse? Tall structure.
Round with a conical roof High windows or window space with a path leading up to it.
Or a larger structure or a castle ” (Here there 1s a sketch of a castle abutment on the
transcript.) """Old. Unused Fallen apart. Feeling musty, o1 dark Moss or grass growing
in walls. Wood draw bridge? A black dog? Snow Ice capping a mountain High large
cavernous hall. Castle "

The principal effort in this study has been to devise analytical methods to
extract from such subjective evidence some quantitative measure of the degree
of anomal ous information acquisition, Far this purpose, a code, or alphabet,
of simple descriptive queriesisemployed, which can be addressed to all targets
and dl perceptions. These descriptors, 30 in number, range over a spectrum
from quite factual discriminations, for example, whether the scene isindoors
or outdoors, whether trees are present, or whether there are automobiles, to
much more subjective aspects, such as whether the ambience 1s noisy o1 guiet,
confined or expansive, hectic, or tranquil, Encoding of the target is normally
performed by the agent at the time of visitation, and of the perception by the
percipient after the free-response impression of the target has been recorded.

With the target and perception thus encoded, a variety of analytical scoring
methods areinvoked, described in detail elsewhere (Dunne et al., 1983; Jahn,
Dunne, & Jahn, 1980; Jahn et al., 1982), that vield numerical scoresindicative
of the information content of each perception relative to its corresponding
target. Most of these methods acknowledge the a priori probabilities of the
various descriptors, that is, that more scenes tend to be outdoorsthan indoors,
that more tend to have people in them than not, etc.; therefore, a perception
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Fig. 14 PRP Target: | retiakovskaia Gallereia, Moscow, U.S.S.R. The percipient wasin Wisconsin,
come 4500 miles away | he perception, generated 24 hours precognitively, reads, i part:
“Have the sensation of being n avery quiet, sombre, subdued sort of atmosphere . .
Any color impressions 1 gel are the same-—greys, browns, dark subdued colors. I feel an
oldness . 'm thinking of a large church or something, or a castle. Some kind of
building It seems to be quite large Sensation of sounds echoing, subdued colors. 1
see several, maybe two to four round balls that scem to be on top of something. Maybe
it’s some kind of decoration [ ike on top of something that's of a generally square shape.
Almost like asquare column with a ball on top | have a very clear picture suddenly of
an old building It’s quite large | here are windows with, like, arches 'hey may not be
exactly arched; the arches come to a pomnt on lop, amost. Very impressive. It's a light
grey color. verV ornate It comes to a point of some sort, but it's not 3 regular point Iike
where 1t should be round on | op 1t comesto a point. I'm not sure if it's windows or the

shape of the building itself. Great big double doors Just caw those square pillars
with the ballson top again They seem lo be almost like an entranceway, one on either
side ”

that is accurate about lesslikely aspects achieves a higher score than one that
correctly predicts more likely features. The scoresare all normalized in some
fashion, for example, by various chance expectations or by perfect scores. In
some recipesternary or quaternary descriptor responses are also employed,
whereby the agent and the percipient can effectively reject or equivocate on
aquestion, or expressgradations of its importance.

The most powerful aspect of thiscoding approach is that unlike traditional
impressionistic ranking procedures, digital scoring algorithms can be applied
to compare any perception with a very large number of alternative targets—
not Justthe 5 or 10 that could becompared by ahuman judge, The distribution
of the mismatch scores, that is, the off-diagonal matrix elements of the per-
ception/target array, has sufficiently Gaussian characteristics to serve as an
empirical ""'chancg’ reference for statistical quantification of the correctly
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matched scores. The processisillustrated in Fig. 15, where the larger dashed
curve isthe empirical chance distribution thus constructed by one particular
binary scoring method from some 42,000 mismatch scores. In comparison,
the solid line, denoting the distribution of proper target scoresfor 334 formal
trials is seen to be distorted to the high score side. If we remove from that
proper target score distribution the largest component that is a subset of the
empirical chance distribution, (dotted curve), the residue (dot-dashed curve)
should be an indication of the information acquired beyond the chance ex-
pectation for guessing. In this case, about 15%o0f thetria scoresareinvolved
in that extra-chance, positive information residue. More detailed numerical
calculation yields a probability for this degree of information acquisition by
chance of about 10~!! for the data and method illustrated. The other scoring
methods show comparable results (Dunne, Jahn, & Nelson, 1983).

A primary interest isthe dependence of thisextra-chanceinformation com-
ponent on the physical parameters of the experiment, most notably on the
distance between the percipient and the agent. Asillustrated in Fig. 16, within
the accuracy of the data and the statistical treatment just described, no sg-
nificant dependenceisfound; upto intercontinental distancesof several thou-
sand miles, there appears to be no discernible advantage for closer targets.
Certainly, there is no 1/r? dependence that might be expected for various
wave-propagation mechanisms that have been proposed for such phenomena
(Kogan, 1968; Chari, 1977; Persinger, 1979).

Perhaps even more striking is the absence of any discernible dependence
of perception accuracy on the time interval between perception effort and
target visitation by the agent. Figure 17 shows the 334 formal trial scores

42000 CHANCE SCORES
334 PRP SCORES
—— EMPIRI ANCE

-~ DISTRIB |
3l // /_

PROPER TARGET
SCORES

CHANCE COMPONENT
OF SCORES

FREQUENCY (%)

0 0. 25 0.5 0.75 1
NORMALI ZED SCORE

Fig. 15. PRP scoredistribution.




46 R G.Jahn et al.
1
o, w ’ ’ °© ° °
0. 75k o © o o ° PRP MEAN
3. a S
% < 8 ° ° o ° 0
6800000 % o 09 0o ° ° ° -
°° o"o ? 3 L¥ e 8% o o.
° ° L] - B & o8
B 0. 5p08og a2 v g
S (2 8 I 5 8, .3 ° e
o o o %4 ° e o, ° °
s (éo fg ® ° °o‘> o0 °s o ° ° o
o ° ° ° ° f R
o o © CHANCE MEAN
0.25¢ i
O 1 L J
0 2000 4000 6000

DISTANCE ( MILES)
Fig. 16. PRP scores versusspatial separation, N = 334.

arrayed as a function of this time displacement. Zero abscissa denotes that
the perception wasdictated at the time of target visitation. Timesto the right
of this correspond to perceptions that were attempted precognitively by the
indicated number of hours. Timesto the left comprisea smaller body of data
taken retrocognitively, wherein the percipient dictated the perception after
the target had been visited, but before any information had been transferred
by ordinary means. Again, over the range covered by these experiments, there
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is no stetistically significant dependence on this tempora parameter. Identi-
fication of the specific process whereby the consciousness of a percipient is
apparently able to access pointsremotein both spaceand timefrom itscurrent
physical location iswdl beyond our present understanding, but data such as
displayed in Figs. 16 and 17, if sustained in further experimentation, will
severdly delimit the physical mechanismsthat could legitimately be invoked.

Clearly there isaso interest in the dependence of the yield of such exper-
iments on the psychological characteristicsand strategies of the percipients
and agents, both separately and as paired participants, but as noted earlier,
thiscategory of correlation has not been extensively pursued, in part because
thedatabaseisstill far too small for such analysesto beeffective. Nonethel ess,
the compounding data are routinely examined to gather impressions about
the efficacy of the descriptor questions, the variability in individual interpre-
tation of and response to the descriptors, and the physica and psychologica
correlatesof the most successful trials.

Theoretical Consderations

Experiments like those outlined above beg for some form of theoretical
model to help correlatedata, design more incisiveexperiments, and interpret
the observed effectsin more fundamental terms. The literature of psychic
research abounds with attempts to transpose various physical formalismsto
this purpose: electromagnetic models, thermodynamic models, mechanical
models, statistical mechanical models, hyperspace models, quantum me-
chanical models, and others(Bohm, 1971; Chari, 1977; Costade Beauregard,
1979; Feinberg, 1975; Kogan, 1968; Persinger, 1979; Rauscher, 1979; von
Lucadou & Kornwachs, 1979). Although these comprisean interesting body
of effort, none of them seemsfully competent to accommodate experimental
data like those described above. Indeed, it appearsthat no simple application
of existing physical theory is likely to prevail. In order to encompass the
observed effects, a substantially more fundamental leve of theoretical model
will need be deployed, one which more explicitly acknowledges the role of
consciousnessin the definition of physical redlity.

The model that hasso far proven most serviceablefor our purposes takes
the position that redity, or experience, is constituted only in the interaction
of consciousnesswith its environment, and thus that any physical theory, or
any other scheme of conceptual organization, can only properly addressthe
interaction, not the environment or the consciousness, per se. Similarly, it
regardsthe common conceptsand formalismsof physical theoriesasno more
than useful organizing strategies adopted by the consciousness to order and
process the information it acquiresfrom the environment. Therefore, these
should be as much reflective of the characteristicsof the consciousnessas of
those of the environment or, more precisaly, they should reflect the charac-
teristics of the interaction of the two.
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In this spirit, the model attempts to apply, via metaphor, the concepts and
formalisms of elementary quantum mechanics to a representation of the in-
teraction of consciousnesswith physical systemsand processes, in aform that
can accommodate both **normal** and ** anomalous'™ behavior. Central to this
metaphor isthe assignment to consciousnessof a partially wave-like character
which can manifest itsdlf in variousinteractions, much likethe wave/particle
duality of atomic scale phenomena. More specificaly, by representing con-
sciousness by quantum mechanical wave functions, and its physical environ-
ment by appropriate potential energy profiles, Schrodinger wave mechanics
may be used to derive eigenfunctionsand eigenvaluesthat can be associated
with both the psychological and physical experiences of the consciousness/
environment interaction. To bring this metaphor to pragmatic utility, it is
necessary to relate certain mathematical aspectsof the formalism, such asthe
coordinate system, the quantum numbers, and even the metric itself, with
variousimpressionistic descriptorsof consciousness, such asitsintensity, per-
spective, approach/avoidance attitude, balance between cognitive and emo-
tional activity, and receptive/active disposition. With thesein hand, the generic
principles of quantum mechanics— uncertainty, indistinguishability, corre-
spondence, exclusion, etc.—as wel as a number of specific computational
applications, such as the central force fiedd and atomic structure, covalent
molecular bonds, bamer penetration, and quantum statistical collective be-
havior, become useful analogiesfor representation and correlation of a variety
of consciousness-related physical effects, both norma and anomalous, and
for the design of experiments to study these more systematically.

The full text and mechanics of this model are developed elsewhere (Jahn
& Dunne, 1986, 1987), along with its application to particular experimental
situations. Even in its comprehensive form, since the variousassociations it
invokesare largely intuitive and empirical, and since few quantitative scales
of consciousness properties yet exist, no more than semi-quantitative corre-
lations can so far be made. Notwithstanding, comparison of our laboratory
data and theinformal testimony of our operators with appropriate aspects of
the model have substantiated our confidence in the potential utility of the
guantum mechanica metaphor and confirmed itsvauein providinga viable
perspective and a facilelanguage for the design of better experiments and the
informal representation of the operators cognitive and emotiona attitudes
and strategies. Beyond this, the model suggestsa number of testable hypotheses,
some of which are currently under study. For example, the postulated wave-
mechanical nature of consciousness/environment interactions implies that
the combined efforts of two or more consciousnessesattending to the same
task may display constructive or destructive interference patterns, rather than
simplelinear superpositions. To test this, experiments utilizing the REG and
RMC devices are underway to explore the effectsof multiple operators ad-
dressingthe same task simultaneously,compared to their individual signatures
of achievement, and preliminary results appear to support the model. Yet
other experiments are investigating the effectsof spatial separation between
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operator and device, to be compared with the same operator's performance
under proximate conditions, in an effort to comprehend the consciousness
distance parameter.

Applicationsand Implications

As mentioned in the introduction, this program of research isintended to
address aspects of anomalous consciousness-rel ated phenomena that could
bear on engineering practice, in both the short and longer terms. Based on
the results obtained to date, a few domains of immediate relevance indeed
appear to merit more specific and detailed study, and others may present
themselvesin thelonger view. In particular, the resultswith the random event
generatorsraise the generic possibility of anomal ous effects arising from con-
sciousor unconsciousinteractions between human operatorsand any sensitive
microelectronic information processing devices or systems, most especialy
those involving random or pseudo-random noise elementsfor signd initiation
or reference profiles. In the remote perception category, numerous current
applications of such techniques in national security and law enforcement,
archaeol ogical searches, natural resource prospecting and medical diagnosis,
employing variousaspects of the experimental and analytical techniques out-
lined above, could be cited. Asin the basic research, the emphasisin many
of these applications has already shifted from credibility demonstration to
refinement of protocols, participant strategies, and data analysistechniques
to enhance their individual and collective efficacy.

It is premature to speculate on the broader and more fundamental impli-
cations of the empirical resultsand supporting model to the basic scientific
paradigm, other than possibly to suggest that some generalization of the pre-
vailing " particulate™ view of consciousness, with itslinear, causal, objective
premises, to a more ""wave-mechanica,” participatory, holistic conceptual-
ization may allow the observed™ anomalous™ phenomenato beaccommodated
as normal consequences of bonded-system behavior.
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